Cho phương trình \(\left( {{m^2} + 5m + 4} \right){x^2} = m + 4\), trong đó m là một số.
Chứng minh rằng :
a. Khi m = - 4, phương trình nghiệm đúng với mọi giá trị của ẩn.
b. Khi m = - 1, phương trình vô nghiệm.
c. Khi m = - 2 hoặc m = - 3, phương trình cũng vô nghiệm.
d. Khi m = 0, phương trình nhận x = 1 và x = - 1 là nghiệm.
a. Thay m = - 4 vào hai vế của phương trình, ta có:
- Vế trái: \(\left[ {{{\left( { - 4} \right)}^2} + 5.\left( { - 4} \right) + 4} \right]{x^2} = 0{x^2}\)
- Vế phải: - 4 + 4 = 0
Phương trình đã cho trở thành: \(0{x^2} = 0\)
Vậy phương trình nghiệm đúng với mọi giá trị của x.
b. Thay m = - 1 vào hai vế của phương trình, ta có:
- Vế trái: \(\left[ {{{\left( { - 1} \right)}^2} + 5.\left( { - 1} \right) + 4} \right]{x^2} = 0{x^2}\)
- Vế phải: - 1 + 4 = 3
Phương trình đã cho trở thành: $0{x^2} = 3$
Không có giá trị nào của x thỏa mãn phương trình.
Vậy, phương trình đã cho vô nghiệm.
c. Thay m = - 2 vào hai vế của phương trình, ta có:
- Vế trái: \(\left[ {{{\left( { - 2} \right)}^2} + 5.\left( { - 2} \right) + 4} \right]{x^2} = - 2{x^2}\)
Advertisements (Quảng cáo)
- Vế phải: - 2 + 4 = 2
Phương trình đã cho trở thành: \( - 2{x^2} = 2\)
Không có giá trị nào của x thỏa mãn phương trình vì vế phải âm còn vế trái dương.
Vậy phương trình đã cho vô nghiệm.
Thay m = - 3 vào hai vế của phương trình, ta có:
- Vế trái: \(\left[ {{{\left( { - 3} \right)}^2} + 5.\left( { - 3} \right) + 4} \right]{x^2} = - 2{x^2}\)
- Vế phải: - 3 + 4 = 1
Phương trình đã cho trở thành: \( - 2{x^2} = 1\)
Không có giá trị nào của x thỏa mãn phương trình vì vế phải âm còn vế trái dương.
Vậy phương trình đã cho vô nghiệm.
d. Khi m = 0, phương trình đã cho trở thành: \(4{x^2} = 4\)
Thay x = 1 và x = -1 vào vế trái của phương trình, ta có:
x = 1: 4.12 = 4
x = -1: 4(-1)2 = 4
Vì vế trái bằng vế phải nên x = 1 và x = -1 là nghiệm của phương trình.