Trang chủ Lớp 8 SGK Toán 8 - Chân trời sáng tạo Giải mục 1 trang 73, 74 Toán 8 tập 2– Chân trời...

Giải mục 1 trang 73, 74 Toán 8 tập 2– Chân trời sáng tạo: Từ trường hợp đồng dạng thứ ba của hai tam giác...

Lời Giải HĐ1, TH1, VD1 mục 1 trang 73, 74 SGK Toán 8 tập 2– Chân trời sáng tạo Bài 3. Các trường hợp đồng dạng của hai tam giác vuông. Từ trường hợp đồng dạng thứ ba của hai tam giác...

Hoạt động1

a) Từ trường hợp đồng dạng thứ ba của hai tam giác, xét xem tam giác \(ABC\) vuông tại \(A\) và tam giác \(MNP\) vuông tại \(M\) có \(\widehat B = \widehat N\) thì hai tam giác đó có đồng dạng với nhau không.

b) Từ trường hợp đồng dạng thứ hai của hai tam giác, xét xem nếu tam giác \(ABC\) vuông tại \(A\) và tam giác \(MNP\) vuông tại \(M\) có \(\frac{{AB}}{{MN}} = \frac{{AC}}{{MP}}\) thì hai tam giác đó có đồng dạng với nhau không.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

- Nếu hai góc của tam giác này bằng hai góc của tam giác kia thì hai tam giác đố đồng dạng với nhau.

- Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và góc tạo bởi các cặp cạnh đó bằng nhau, thì hai tam giác đó đồng dạng.

Answer - Lời giải/Đáp án

a) Xét tam giác \(ABC\) và tam giác \(MNP\) ta có:

\(\widehat B = \widehat N\) (giả thuyết)

\(\widehat A = \widehat M = 90^\circ \).

Do đó, \(\Delta ABC\backsim\Delta MNP\) (g.g)

b) Xét tam giác \(ABC\) và tam giác \(MNP\) ta có:

\(\frac{{AB}}{{MN}} = \frac{{AC}}{{MP}}\) (giả thuyết)

\(\widehat A = \widehat M = 90^\circ \).

Do đó, \(\Delta ABC\backsim\Delta MNP\) (c.g.c).


Thực hành1

Cho tam giác \(DEF\) vuông tại \(D\) có \(DH\) là đường cao (Hình 3). Chứng minh rằng \(D{E^2} = EH.EF\)

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Nếu một tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Vì \(DH \bot EF \Rightarrow \widehat {DHE} = 90^\circ \)

Xét tam giác \(DEH\) và tam giác \(FED\) ta có:

\(\widehat E\) chung

\(\widehat {DHE} = \widehat {EDF} = 90^\circ \).

Do đó, \(\Delta DEH\backsim\Delta FED\) (g.g)

Suy ra, \(\frac{{DE}}{{EF}} = \frac{{EH}}{{DE}} \Rightarrow D{E^2} = EF.EH\) (điều phải chứng minh).


Vận dụng1

Tính chiều cao của cột cờ trong hoạt động khởi động trang 73.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Nếu một tam giác vuông này có một góc nhọn bằng góc nhọn của tam giác vuông kia thì hai tam giác vuông đó đồng dạng với nhau.

Answer - Lời giải/Đáp án

Cùng một thời điểm thì góc tạo bởi tia nắng và mặt đất là như nhau. Do đó, \(\widehat {EFD} = \widehat {BCA}\).

Xét tam giác \(DEF\) và tam giác \(ABC\) ta có:

\(\widehat {EFD} = \widehat {BCA}\) (chứng minh trên)

\(\widehat {EDF} = \widehat {BAC} = 90^\circ \).

Do đó, \(\Delta DEF\backsim\Delta ABC\) (g.g)

Suy ra, \(\frac{{FD}}{{AC}} = \frac{{ED}}{{AB}} \Leftrightarrow \frac{{1,8}}{6} = \frac{{2,4}}{{AB}} \Rightarrow AB = \frac{{6.2,4}}{{1,8}} = 8\).

Vậy cột cờ \(AB\) cao 8m.

Advertisements (Quảng cáo)