Trang chủ Lớp 8 Toán lớp 8 (sách cũ) Bài 64 trang 100 sgk Toán 8 tập 1, Cho hình bình...

Bài 64 trang 100 sgk Toán 8 tập 1, Cho hình bình hành ABCD. Các tia phân giác của các góc A, B, C, D...

Cho hình bình hành ABCD. Các tia phân giác của các góc A, B, C, D. Bài 64 trang 100 sgk toán 8 tập 1 - Hình chữ nhật

Bài 64. Cho hình bình hành \(ABCD\). Các tia phân giác của các góc \(A, B, C, D\) cắt nhau như trên hình 91. Chứng minh rằng \(EFGH\) là hình chữ nhật.

           

Theo giả thiết \(ABCD\) là hình bình hành nên theo tính  chất của hình bình hành ta có:

     \(\widehat A = \widehat C,\widehat B = \widehat D\)                                (1)

Theo định lí tổng các góc trong một tứ giác ta có:

     \(\widehat A + \widehat C + \widehat B + \widehat D = {360^0}\)                 (2)

Từ (1) và (2) suy ra: \(\widehat A + \widehat B = {{{{360}^0}} \over 2} = {180^0}\)

\(AG\) là tia phân giác góc \(\widehat A\) nên ta có: \(\widehat {BAG} = {1 \over 2}\widehat A\)

Advertisements (Quảng cáo)

\(BG\) là tia phân giác góc \(\widehat B\) nên ta có: \(\widehat {ABG} = {1 \over 2}\widehat B\)

Do đó: \(\widehat {BAG} + \widehat {ABG} = {1 \over 2}\left( {\widehat A + \widehat B} \right) = {1 \over 2}{.180^0} = {90^0}\)

Xét tam giác \(AGB\) có: \(\widehat {BAG} + \widehat {ABG} = {90^0}\)       (3)

Theo định lí tổng ba góc trong một tam giác ta có:

     \(\widehat {BAG} + \widehat {ABG} + \widehat {AGB} = {180^0}\)                       (4)

Từ (3) và (4) suy ra: \(\widehat {AGB} = {90^0}\)        

Chứng minh tương tự ta được: \(\widehat {DEC} = \widehat {EHG} = {90^0}\)

Tứ giác \(EFGH\) có ba góc vuông nên là hình chữ nhật.

Bạn đang xem bài tập, chương trình học môn Toán lớp 8 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)