Câu hỏi/bài tập:
Dùng tính chất cơ bản của phân thức, giải thích vì sao các kết luận sau đúng.
a) \(\frac{{{{(x - 2)}^3}}}{{{x^2} - 2x}} = \frac{{{{(x - 2)}^2}}}{x};\)
b) \(\frac{{1 - x}}{{ - 5x + 1}} = \frac{{x - 1}}{{5x - 1}}\).
Dựa vào tính chất cơ bản của phân thức đại số
Advertisements (Quảng cáo)
- Nếu nhân cả tử và mẫu của một phân thức với cùng một đa thức khác 0 thì được một phân thức bằng phân thức đã cho.
- Nếu chia cả tử và mẫu của một phân thức cho một nhân tử chung của chúng thì được một phân thức bằng phân thức đã cho.
a) Phân thức \(\frac{{{{(x - 2)}^3}}}{{{x^2} - 2x}}\) có mẫu thức là \({x^2} - 2x\). Phân tích đa thức này thành nhân tử, ta dược \(\frac{{{{(x - 2)}^3}}}{{{x^2} - 2x}} = \frac{{{{\left( {x - 2} \right)}^3}}}{{x(x - 2)}}\), do đó \(\frac{{{{(x - 2)}^3}}}{{{x^2} - 2x}} = \frac{{{{\left( {x - 2} \right)}^3}}}{{x(x - 2)}}\).
Chia cả tử và mẫu của phân thức này cho x – 2, ta được \(\frac{{{{(x - 2)}^3}}}{{{x^2} - 2x}} = \frac{{{{(x - 2)}^2}}}{x}\).
b) Vì 1 – x = - (x – 1) và -5x + 1 = - (5x – 1) nên nhân cả tử và mẫu của phân thức \(\frac{{1 - x}}{{ - 5x + 1}}\) với -1, ta được \(\frac{{1 - x}}{{ - 5x + 1}} = \frac{{x - 1}}{{5x - 1}}\).