Trang chủ Lớp 8 Vở thực hành Toán 8 (Kết nối tri thức) Bài 3 trang 22 vở thực hành Toán 8 tập 2: Hãy...

Bài 3 trang 22 vở thực hành Toán 8 tập 2: Hãy thực hiện các phép tính đã chỉ r\(\frac{{4{{\rm{x}}^2} - 1}}{{16{{\rm{x}}^2} - 1}}...

Thực hiện cộng (trừ) trong ngoặc trước rồi tính đến phép nhân. Hướng dẫn cách giải/trả lời Giải bài 3 trang 22 vở thực hành Toán 8 tập 2 - Luyện tập chung trang 22 . Hãy thực hiện các phép tính đã chỉ ra.

Câu hỏi/bài tập:

Question - Câu hỏi/Đề bài

Hãy thực hiện các phép tính đã chỉ ra.

a) \(\frac{{4{{\rm{x}}^2} - 1}}{{16{{\rm{x}}^2} - 1}}.\left( {\frac{1}{{2{\rm{x}} + 1}} + \frac{1}{{2{\rm{x}} - 1}} + \frac{1}{{1 - 4{{\rm{x}}^2}}}} \right)\);

b) \(\left( {\frac{{x + y}}{{xy}} - \frac{2}{x}} \right).\frac{{{x^3}{y^3}}}{{{x^3} - {y^3}}}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Advertisements (Quảng cáo)

Thực hiện cộng (trừ) trong ngoặc trước rồi tính đến phép nhân

Answer - Lời giải/Đáp án

a) Ta có: \(\frac{1}{{2{\rm{x}} + 1}} + \frac{1}{{2{\rm{x}} - 1}} = \frac{{2x - 1 + 2x + 1}}{{(2x + 1)(2x - 1)}} = \frac{{4x}}{{4{x^2} - 1}}\).

Do đó \(\frac{1}{{2{\rm{x}} + 1}} + \frac{1}{{2{\rm{x}} - 1}} + \frac{1}{{1 - 4{{\rm{x}}^2}}} = \frac{{4x}}{{4{x^2} - 1}} + \frac{{ - 1}}{{4{x^2} - 1}} = \frac{{4x - 1}}{{4{x^2} - 1}}\).

\(\begin{array}{l}\frac{{4{{\rm{x}}^2} - 1}}{{16{{\rm{x}}^2} - 1}}.\left( {\frac{1}{{2{\rm{x}} + 1}} + \frac{1}{{2{\rm{x}} - 1}} + \frac{1}{{1 - 4{{\rm{x}}^2}}}} \right) = \frac{{4{{\rm{x}}^2} - 1}}{{16{{\rm{x}}^2} - 1}}.\frac{{4{\rm{x}} - 1}}{{4{{\rm{x}}^2} - 1}}\\ = \frac{{\left( {4{{\rm{x}}^2} - 1} \right)\left( {4{\rm{x}} - 1} \right)}}{{\left( {4x - 1} \right)\left( {4x + 1} \right)\left( {4{{\rm{x}}^2} - 1} \right)}} = \frac{1}{{4x + 1}}.\end{array}\)

b) \(\left( {\frac{{x + y}}{{xy}} - \frac{2}{x}} \right).\frac{{{x^3}{y^3}}}{{{x^3} - {y^3}}} = \frac{{x - y}}{{xy}}.\frac{{{x^3}{y^3}}}{{\left( {x - y} \right)\left( {{x^2} + xy + {y^2}} \right)}} = \frac{{{x^2}{y^2}}}{{{x^2} + xy + {y^2}}}\).

Advertisements (Quảng cáo)