Trang chủ Lớp 9 SBT Toán 9 - Kết nối tri thức Bài 4.29 trang 51 SBT Toán 9 – Kết nối tri thức...

Bài 4.29 trang 51 SBT Toán 9 - Kết nối tri thức tập 1: Xét điểm B nằm giữa hai điểm A và H...

Tam giác HDB vuông tại H nên \(\frac{{HD}}{{BD}} = \sin \widehat {HBD}\). + Tính được góc ADB của tam giác ABD. Hướng dẫn giải - Bài 4.29 trang 51 sách bài tập toán 9 - Kết nối tri thức tập 1 - Chương IV. Hệ thức lượng trong tam giác vuông. Xét điểm B nằm giữa hai điểm A và H. Giả sử có điểm D sao cho DH vuông góc với AB và (widehat {DAH} = {15^o}, widehat {DBH} = {30^o}). Chứng minh rằng (HD = frac{{AB}}{2})...

Question - Câu hỏi/Đề bài

Xét điểm B nằm giữa hai điểm A và H. Giả sử có điểm D sao cho DH vuông góc với AB và \(\widehat {DAH} = {15^o},\widehat {DBH} = {30^o}\). Chứng minh rằng \(HD = \frac{{AB}}{2}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Tam giác HDB vuông tại H nên \(\frac{{HD}}{{BD}} = \sin \widehat {HBD}\).

+ Tính được góc ADB của tam giác ABD, từ đó suy ra tam giác ABD cân tại D nên \(BD = AB\).

+ Do đó, \(BD = AB = 2HD\), suy ra điều phải chứng minh.

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Tam giác HDB vuông tại H nên \(\frac{{HD}}{{BD}} = \sin \widehat {HBD} = \sin {30^o} = \frac{1}{2}\) nên \(BD = 2HD\).

Tam giác ABD có \(\widehat {ABD} = {180^o} - \widehat {DBH} = {150^o},\) \(\widehat {BAD} = {15^o}\) nên \(\widehat {ADB} = {180^o} - \widehat {ABD} - \widehat A = {15^o}\).

Do đó tam giác ABD cân tại B. Suy ra \(BD = AB\).

Suy ra \(BD = AB = 2HD\) nên \(HD = \frac{{AB}}{2}\).

Advertisements (Quảng cáo)