Trang chủ Lớp 9 SBT Toán 9 - Kết nối tri thức Câu 4 trang 19 SBT Toán 9 Kết nối tri thức: Tọa...

Câu 4 trang 19 SBT Toán 9 Kết nối tri thức: Tọa độ một giao điểm của parabol (P): y = 1/2/x^2 và đường thẳng (d): y = x + 3/2 là A. 1;1/2...

Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình: \(\frac{1}{2}{x^2} = x + \frac{3}{2}\). Phân tích và giải Câu hỏi Câu 4 trang 19 SBT Toán 9 Kết nối tri thức - Bài tập cuối chương VI.

Câu hỏi/bài tập:

Tọa độ một giao điểm của parabol (P): \(y = \frac{1}{2}{x^2}\) và đường thẳng (d): \(y = x + \frac{3}{2}\) là

A. \(\left( {1;\frac{1}{2}} \right)\).

B. \(\left( {\frac{1}{2};2} \right)\).

C. \(\left( { - \frac{1}{2};1} \right)\).

D. \(\left( { - 1;\frac{1}{2}} \right)\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình: \(\frac{1}{2}{x^2} = x + \frac{3}{2}\).

+ Giải phương trình thu được tìm được x.

Advertisements (Quảng cáo)

+ Thay x tìm được vào \(y = x + \frac{3}{2}\), từ đó tìm được tọa độ giao điểm của d và (P).

Answer - Lời giải/Đáp án

Hoành độ giao điểm của (P) và (d) là nghiệm của phương trình: \(\frac{1}{2}{x^2} = x + \frac{3}{2}\), suy ra \({x^2} - 2x - 3 = 0\).

Vì \(1 + 2 - 3 = 0\) nên phương trình \({x^2} - 2x - 3 = 0\) có hai nghiệm \({x_1} = - 1;{x_2} = \frac{3}{1} = 3\).

Với \(x = - 1\) thay vào \(y = x + \frac{3}{2}\) ta có: \(y = - 1 + \frac{3}{2} = \frac{1}{2}\).

Với \(x = 3\) thay vào \(y = x + \frac{3}{2}\) ta có: \(y = 3 + \frac{3}{2} = \frac{9}{2}\).

Do đó, tọa độ một giao điểm của parabol (P): \(y = \frac{1}{2}{x^2}\) và đường thẳng (d): \(y = x + \frac{3}{2}\) là \(\left( { - 1;\frac{1}{2}} \right)\).

Chọn D

Advertisements (Quảng cáo)