Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 20 trang 159 SBT Toán 9 Tập 1: Cho nửa đường...

Câu 20 trang 159 SBT Toán 9 Tập 1: Cho nửa đường tròn tâm O, đường kính AB, dây CD. Các đường vuông...

a) Cho nửa đường tròn tâm O, đường kính AB, dây CD. Các đường vuông góc với CD tại C và D tương ứng cắt AB ở M và N. Chứng minh rằng AM = BN.. Câu 20 trang 159 Sách bài tập (SBT) Toán 9 Tập 1 - Bài 2. Đường kính và dây của đường tròn

a)   Cho nửa đường tròn tâm O, đường kính AB, dây CD. Các đường vuông góc với CD tại C và D tương ứng cắt AB ở M và N. Chứng minh rằng AM = BN.

b)      Cho nửa đường tròn tâm O, đường kính AB. Trên AB lấy các điểm M, N sao cho

 AM = BN. Qua M và qua N, kẻ các đường thẳng song song với nhau, chúng cắt nửa đường tròn lần lượt ở C và D. Chứng minh rằng MC và ND vuông góc với CD.

a) Ta có: CM ⊥CD

           DN⊥CD

Suy ra:      CM // DN

Kẻ OI ⊥CD

Suy ra: OI // CM // DN

Ta có: IC = ID (đường kính dây cung)

Suy ra: OM = ON                                              (1)

Mà:         AM + OM = ON + BM( = R)                (2)

Advertisements (Quảng cáo)

Từ (1) và (2) suy ra: AM = BN.

b) Ta có: MC // ND (gt)

Suy ra tứ giác MCDN là hình thang

Lại có:   OM + AM = ON + BN (= R)

Mà          AM = BN (gt)

Suy ra: OM = ON

Kẻ OI ⊥ CD                                                         (3)

Suy ra: IC = ID (đường kính dây cung)

Khi đó OI là đường trung bình của hình thang ACDN

Suy ra: OI // MC // ND                                          (4)

Từ (3) và (4) suy ra: MC ⊥ CD, ND ⊥ CD.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)