Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 25 trang 11 bài tập SBT môn Toán 9 tập 2:...

Câu 25 trang 11 bài tập SBT môn Toán 9 tập 2: Giải các hệ phương trình sau bằng phương pháp cộng đại...

Giải các hệ phương trình sau bằng phương pháp cộng đại số.. Câu 25 trang 11 Sách bài tập (SBT) Toán 9 tập 2 - Bài 4: Giải hệ phương trình bằng phương pháp cộng đại số

Giải các hệ phương trình sau bằng phương pháp cộng đại số:

\(a)\left\{ {\matrix{
{2x - 11y = - 7} \cr
{10x + 11y = 31} \cr} } \right.\)

\(b)\left\{ {\matrix{
{4x + 7y = 16} \cr
{4x - 3y = - 24} \cr} } \right.\)

\(c)\left\{ {\matrix{
{0,35x + 4y = - 2,6} \cr
{0,75x - 6y = 9} \cr} } \right.\)

\(d)\left\{ {\matrix{
{\sqrt 2 x + 2\sqrt 3 y = 5} \cr
{4x - 3y = - 24} \cr} } \right.\)

\(e)\left\{ {\matrix{
{10x - 9y = 8} \cr
{15x + 21y = 0,5} \cr} } \right.\)

\(f)\left\{ {\matrix{
{3,3x + 4,2y = 1} \cr
{9x + 14y = 4} \cr} } \right.\)

Giải

a)

\(\eqalign{
& \left\{ {\matrix{
{2x - 11y = - 7} \cr
{10x + 11y = 31} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{12x = 24} \cr
{2x - 11y = - 7} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 2} \cr
{2.2 - 11y = - 7} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 2} \cr
{ - 11y = - 11} \cr} } \right. \cr
& \Leftrightarrow \left\{ {\matrix{
{x = 2} \cr
{y = 1} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = (2; 1)

b)

\(\eqalign{
& \left\{ {\matrix{
{4x + 7y = 16} \cr
{4x - 3y = - 24} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{10y = 40} \cr 
{4x - 3y = - 24} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 4} \cr 
{4x - 3.4 = - 24} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = 4} \cr 
{4x = - 12} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = 4} \cr 
{x = - 3} \cr} } \right. \cr} \)

Advertisements (Quảng cáo)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = (-3; 4)

c)

\(\eqalign{
& \left\{ {\matrix{
{0,35x + 4y = - 2,6} \cr
{0,75x - 6y = 9} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{1,05x + 12y = - 7,8} \cr 
{1,5x - 12y = 18} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{2,55x = 10,2} \cr 
{0,75x - 6y = 9} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 4} \cr 
{0,75.4 - 6y = 9} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = 4} \cr 
{ - 6y = 6} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = 4} \cr 
{y = - 1} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = (4; -1)

d)

\(\eqalign{
& \left\{ {\matrix{
{\sqrt 2 x + 2\sqrt 3 y = 5} \cr
{3\sqrt 2 x - \sqrt 3 y = {9 \over 2}} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{\sqrt 2 x + 2\sqrt 3 y = 5} \cr 
{6\sqrt 2 x - 2\sqrt 3 y = 9} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{7\sqrt 2 x = 14} \cr 
{\sqrt 2 x + 2\sqrt 3 y = 5} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = {{14} \over {7\sqrt 2 }}} \cr 
{\sqrt 2 x + 2\sqrt 3 y = 5} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = \sqrt 2 } \cr 
{\sqrt 2 .\sqrt 2 + 2\sqrt 3 y = 5} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{x = \sqrt 2 } \cr 
{2\sqrt 3 y = 3} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = \sqrt 2 } \cr 
{y = {{\sqrt 3 } \over 2}} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = \(\left( {\sqrt 2 ;{{\sqrt 3 } \over 2}} \right)\)

e)

\(\eqalign{
& \left\{ {\matrix{
{10x - 9y = 8} \cr
{15x + 21y = 0,5} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{30x - 27y = 24} \cr 
{30x + 42y = 1} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{69y = - 23} \cr 
{10x - 9y = 8} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = - {1 \over 3}} \cr 
{10x - 9.\left( { - {1 \over 3}} \right) = 8} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{y = - {1 \over 3}} \cr 
{10x = 5} \cr} } \right. \Leftrightarrow \left\{ {\matrix{
{y = - {1 \over 3}} \cr 
{x = {1 \over 2}} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = \(\left( {{1 \over 2}; - {1 \over 3}} \right)\)

f)

\(\eqalign{
& \left\{ {\matrix{
{3,3x + 4,2y = 1} \cr
{9x + 14y = 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{33x + 42y = 10} \cr 
{27x + 42y = 12} \cr
} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{6x = - 2} \cr 
{9x + 14y = 4} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = - {1 \over 3}} \cr 
{9.\left( { - {1 \over 3}} \right) + 14y = 4} \cr} } \right. \cr 
& \Leftrightarrow \left\{ {\matrix{
{x = - {1 \over 3}} \cr 
{14y = 7} \cr
} } \right. \Leftrightarrow \left\{ {\matrix{
{x = - {1 \over 3}} \cr 
{y = {1 \over 2}} \cr} } \right. \cr} \)

Vậy hệ phương trình đã cho có một nghiệm (x; y) = \(\left( { - {1 \over 3};{1 \over 2}} \right)\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)