So sánh (không dùng bảng số hoặc máy tính bỏ túi):
\(\sqrt {2003} + \sqrt {2005} \) và \(2\sqrt {2004} \)
Gợi ý làm bài
Ta có:
\(\eqalign{
& {\left( {2\sqrt {2004} } \right)^2} = 4.2004 \cr
& = 4008 + 2.2004 \cr} \)
\(\eqalign{
& {\left( {\sqrt {2003} + \sqrt {2005} } \right)^2} \cr
& = 2003 + 2\sqrt {2003.2005} + 2005 \cr} \)
\( = 4008 + 2\sqrt {2003.2005} \)
So sánh 2004 và \(\sqrt {2003.2005} \)
Advertisements (Quảng cáo)
Ta có:
\(\eqalign{
& \sqrt {2003.2005} \cr
& = \sqrt {(2004 - 1)(2004 + 1)} \cr
& = \sqrt {{{2004}^2} - 1} < \sqrt {{{2004}^2}} \cr} \)
Suy ra:
\(\eqalign{
& 2004 > \sqrt {2003.2005} \cr
& \Rightarrow 2.2004 > 2.\sqrt {2003.2005} \cr} \)
\( \Rightarrow 4008 + 2.2004 > 4008 + 2\sqrt {2003.2005} \)
\( \Rightarrow {\left( {2\sqrt {2004} } \right)^2} > {\left( {\sqrt {2003} + \sqrt {2005} } \right)^2}\)
Vậy \(2\sqrt {2004} > \sqrt {2003} + \sqrt {2005} \).
Sachbaita.net