Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 39 trang 162 Sách bài tập (SBT) Toán 9 Tập 1: Chứng...

Câu 39 trang 162 Sách bài tập (SBT) Toán 9 Tập 1: Chứng minh rằng đường thẳng AD tiếp xúc với đường tròn có đường...

b) Chứng minh rằng đường thẳng AD tiếp xúc với đường tròn có đường kính là BC.. Câu 39 trang 162 Sách bài tập (SBT) Toán 9 Tập 1 - Bài 4. Vị trí tương đối của đường thẳng và đường tròn

Cho hình thang vuông ABCD \(\widehat A = \widehat D = 90^\circ )\), AB = 4cm, BC = 13cm, CD = 9cm.

a)      Tính độ dài AD.

b)      Chứng minh rằng đường thẳng AD tiếp xúc với đường tròn có đường kính là BC.

a) Kẻ BE ⊥ CD

Suy ra tứ giác ABED là hình hình chữ nhật

Ta có:     AD = BE

               AB = DE = 4 (cm)

Suy ra:    CE = CD – DE = 9 – 4 = 5 (cm)

Áp dụng định lí Pi-ta-go vào tam giác vuông BCE ta có:

Advertisements (Quảng cáo)

\(B{C^2} = B{E^2} + C{E^2}\)

Suy ra:      \(B{E^2} = B{C^2} - C{E^2} = {13^2} - {5^2} = 144\)

                 BE = 12 (cm)

 Vậy:        AD = 12 (cm)

b) Gọi I là trung điểm của BC

Ta có: \(IB = IC = {1 \over 2}BC = {1 \over 2}.13 = 6,5 (cm)\)  (1)

Kẻ IH ⊥ AD. Khi đó HI là đường trung bình của hình thang ABCD.

Ta có: \(HI = {{AB + CD} \over 2} = {{4 + 9} \over 2} = 6,5\) (cm)  (2)

Từ (1) và (2) suy ra: IB = HI = R

Vậy đường tròn \(\left( {I;{{BC} \over 2}} \right)\) tiếp xúc với đường thẳng AD.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: