Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 43. Trang 111 SBT Toán 9 Tập 1: Hãy tính

Câu 43. Trang 111 SBT Toán 9 Tập 1: Hãy tính...

Hãy tính. Câu 43. Trang 111 Sách Bài Tập (SBT) Toán 9 Tập 1 - Bài 3. Bảng lượng giác

Cho hình:

Biết:

\(\widehat {ACE} = 90^\circ ,AB = BC = CD = DE = 2cm.\) 

Hãy tính:

a) AD, BE;

b) \(\widehat {DAC}\);

c) \(\widehat {BXD}\).

a) Ta có:

\(AC = AB + BC = 2 + 2 = 4\left( {cm} \right)\)

Áp dụng định lí Pi-ta-go vào tam giác vuông ACD, ta có:

Advertisements (Quảng cáo)

\(A{D^2} = A{C^2} + C{D^2} = {4^2} + {2^2} = 16 + 4 = 20\)

\( \Rightarrow AD = \sqrt {20}  = 2\sqrt 5 \left( {cm} \right)\)

Mặt khác: \(CE = CD + DE = 2 + 2 = 4\left( {cm} \right)\)

Áp dụng định lí Pi-ta-go vào tam giác vuông BEC, ta có:

\(B{E^2} = B{C^2} + C{E^2} = {2^2} + {4^2} = 4 + 16 = 20\) 

\( \Rightarrow BE = \sqrt {20}  = 2\sqrt 5 \left( {cm} \right)\)

b) Tam giác ACD vuông tại C nên ta có: \(tg\widehat {DAC} = {{CD} \over {AC}} = {2 \over 4} = {1 \over 2}\)

Suy ra: \(\widehat {DAC} \approx 26^\circ 34’\)

Ta có: \(\widehat {CDA} = 90^\circ  - \widehat {CAD} \approx 90^\circ  - 26^\circ 34′ = 63^\circ 26’\)

Trong tứ giác BCDX, ta có:

\(\widehat {BXD} = 360^\circ  - (\widehat C + \widehat {CDA} + \widehat {CBE})\)

\( = 360^\circ  - (90^\circ  + 63^\circ 26′ + 63^\circ 26′) = 143^\circ 8′.\) 

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)