Giải các phương trình sau bằng cách đưa về phương trình tích:
a) \(3{x^2} + 6{x^2} - 4x = 0\)
b) \({\left( {x + 1} \right)^3} - x + 1 = \left( {x - 1} \right)\left( {x - 2} \right)\)
c) \({\left( {{x^2} + x + 1} \right)^2} = {\left( {4x - 1} \right)^2}\)
d) \({\left( {{x^2} + 3x + 2} \right)^2} = 6\left( {{x^2} + 3x + 2} \right)\)
e) \({\left( {2{x^2} + 3} \right)^2} - 10{x^3} - 15x = 0\)
f) \({x^3} - 5{x^2} - x + 5 = 0\)
Giải các phương trình sau bằng cách đưa về phương trình tích.
a) \(3{x^3} + 6{x^2} - 4x = 0 \Leftrightarrow x\left( {3{x^2} + 6x - 4} \right) = 0\)
x = 0 hoặc \(3{x^2} + 6x - 4 = 0\)
\(\eqalign{
& 3{x^2} + 6x - 4 = 0 \cr
& \Delta ‘ = {3^2} - 3.\left( { - 4} \right) = 9 + 12 = 21 > 0 \cr
& \sqrt {\Delta ‘} = \sqrt {21} \cr
& {x_1} = {{ - 3 + \sqrt {21} } \over 3};{x_2} = {{ - 3 - \sqrt {21} } \over 3} \cr} \)
Vậy phương trình có 3 nghiệm: \({x_1} = 0;{x_2} = {{ - 3 + \sqrt {21} } \over 3};{x_3} = {{ - 3 - \sqrt {21} } \over 3}\)
b)
\(\eqalign{
& {\left( {x + 1} \right)^3} - x + 1 = \left( {x - 1} \right)\left( {x - 2} \right) \cr
& \Leftrightarrow {x^3} + 3{x^2} + 3x + 1 - x + 1 = {x^2} - 2x - x + 2 \cr
& \Leftrightarrow {x^3} + 2{x^2} + 5x = 0 \cr
& \Leftrightarrow x\left( {{x^2} + 2x + 5} \right) = 0 \cr} \)
x = 0 hoặc \({x^2} + 2x + 5 = 0\)
\(\eqalign{
& {x^2} + 2x + 5 = 0 \cr
& \Delta ‘ = 1 - 1.5 = 1 - 5 = - 4 < 0 \cr} \)
Phương trình vô nghiệm.
Vậy phương trình đã cho có một nghiệm x = 0
c)
\(\eqalign{
& {\left( {{x^2} + x + 1} \right)^2} = {\left( {4x - 1} \right)^2} \cr
& \Leftrightarrow {\left( {{x^2} + x + 1} \right)^2} - {\left( {4x - 1} \right)^2} = 0 \cr
& \Leftrightarrow \left[ {\left( {{x^2} + x + 1} \right) + \left( {4x - 1} \right)} \right]\left[ {\left( {{x^2} + x + 1} \right) - \left( {4x - 1} \right)} \right] = 0 \cr
& \Leftrightarrow \left( {{x^2} + x + 1 + 4x - 1} \right)\left( {{x^2} + x + 1 - 4x + 1} \right) = 0 \cr
& \Leftrightarrow \left( {{x^2} + 5x} \right)\left( {{x^2} - 3x + 2} \right) = 0 \cr
& \Leftrightarrow x\left( {x + 5} \right)\left( {{x^2} - 3x + 2} \right) = 0 \cr
& \Leftrightarrow \left[ {\matrix{
{x = 0} \cr
{x + 5 = 0} \cr
{{x^2} - 3x + 2 = 0} \cr} } \right. \cr} \)
x + 5 = 0 ⇒ x = -5
Advertisements (Quảng cáo)
\({x^2} - 3x + 2 = 0\) có dạng: \(a + b + c = 0\), ta có: \(1 + \left( { - 3} \right) + 2 = 0\)
\({x_1} = 1;{x_2} = 2\)
Vậy phương trình đã cho có 4 nghiệm: \({x_1} = 0;{x_2} = - 5;{x_3} = 1;{x_4} = 2\)
d)
\(\eqalign{
& {\left( {{x^2} + 3x + 2} \right)^2} = 6\left( {{x^2} + 3x + 2} \right) \cr
& \Leftrightarrow {\left( {{x^2} + 3x + 2} \right)^2} - 6\left( {{x^2} + 3x + 2} \right) = 0 \cr
& \Leftrightarrow \left( {{x^2} + 3x + 2} \right)\left[ {\left( {{x^2} + 3x + 2} \right) - 6} \right] = 0 \cr
& \Leftrightarrow \left( {{x^2} + 3x + 2} \right)\left( {{x^2} + 3x - 4} \right) = 0 \cr
& \Leftrightarrow \left[ {\matrix{
{{x^2} + 3x + 2 = 0} \cr
{{x^2} + 3x - 4 = 0} \cr} } \right. \cr} \)
\({x^2} + 3x + 2 = 0\) có dạng: \(a - b + c = 0\), ta có:
\(\eqalign{
& 1 - 3 + 2 = 0 \cr
& {x_1} = - 1;{x_2} = - 2 \cr} \)
\({x^2} + 3x - 4 = 0\) có dạng: $a + b + c = 0\)
\(\eqalign{
& 1 + 3 + \left( { - 4} \right) = 0 \cr
& {x_3} = 1;{x_4} = - 4 \cr} \)
Vậy phương trình đã cho có 4 nghiệm: \({x_1} = - 1;{x_2} = - 2;{x_3} = 1;{x_4} = - 4\)
e)
\(\eqalign{
& {\left( {2{x^2} + 3} \right)^2} - 10{x^3} - 15x = 0 \cr
& \Leftrightarrow {\left( {2{x^2} + 3} \right)^2} - 5x\left( {2{x^2} + 3} \right) = 0 \cr
& \Leftrightarrow \left( {2{x^2} + 3} \right)\left( {2{x^2} + 3 - 5x} \right) = 0 \cr} \)
Ta có:
\(\eqalign{
& 2{x^2} \ge 0 \Rightarrow 2{x^2} + 3 > 0 \cr
& \Rightarrow 2{x^2} - 5x + 3 = 0 \cr} \)
Phương trình có dạng: \(a + b + c = 0\)
Ta có:
\(\eqalign{
& 2 + \left( { - 5} \right) + 3 = 0 \cr
& {x_1} = 1;{x_2} = {3 \over 2} \cr} \)
Vậy phương trình đã cho có 2 nghiệm: \({x_1} = 1;{x_2} = {3 \over 2}\)
f)
\(\eqalign{
& {x^3} - 5{x^2} - x + 5 = 0 \cr
& \Leftrightarrow {x^2}\left( {x - 5} \right) - \left( {x - 5} \right) = 0 \cr
& \Leftrightarrow \left( {x - 5} \right)\left( {{x^2} - 1} \right) = 0 \cr
& \Leftrightarrow \left( {x - 5} \right)\left( {x - 1} \right)\left( {x + 1} \right) = 0 \cr
& \left[ {\matrix{
{x - 5 = 0} \cr
{x + 1 = 0} \cr
{x - 1 = 0} \cr} \Leftrightarrow \left[ {\matrix{
{x = 5} \cr
{x = - 1} \cr
{x = 1} \cr} } \right.} \right. \cr} \)
Vậy phương trình đã cho có 3 nghiệm: \({x_1} = 5;{x_2} = - 1;{x_3} = 1\)