Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A ; AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác H). Chứng minh rằng:
a) Ba điểm D, A, E thẳng hàng;
b) DE tiếp xúc với đường tròn có đường kính BC.
a) Theo tính chất hai tiếp tuyến cắt nhau ta có:
AB là tia phân giác của góc HAD
Suy ra: ^DAB=^BAH
AC là tia phân giác của góc HAE
Suy ra: ^HAC=^CAE
Ta có: ^HAD+^HAE=2(^BAH+^HAC)=2.^BAC=2.90∘=180∘
Advertisements (Quảng cáo)
Vậy ba điểm D, A, E thẳng hàng.
b) Gọi M là trung điểm của BC
Theo tính chất của tiếp tuyến, ta có:
AD⊥BD;AE⊥CE
Suy ra: BD // CE
Vậy tứ giác BDEC là hình thang
Khi đó MA là đường trung bình của hình thang BDEC
Suy ra: MA//BD⇒MA⊥DE
Trong tam giác vuông ABC ta có: MA = MB = MC
Suy ra M là tâm đường tròn đường kính BC với MA là bán kính
Vậy DE là tiếp tuyến của đường tròn tâm M đường kính BC.