Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 56 trang 165 Sách bài tập Toán 9 Tập 1: Cho...

Câu 56 trang 165 Sách bài tập Toán 9 Tập 1: Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A ; AH)....

Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A ; AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác H). Chứng minh rằng. Câu 56 trang 165 Sách bài tập (SBT) Toán 9 Tập 1 - Bài 6. Tính chất của hai tiếp tuyến cắt nhau

Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn (A ; AH). Kẻ các tiếp tuyến BD, CE với đường tròn (D, E là các tiếp điểm khác H). Chứng minh rằng:

a)      Ba điểm D, A, E thẳng hàng;

b)      DE tiếp xúc với đường tròn có đường kính BC.

a) Theo tính chất hai tiếp tuyến cắt nhau ta có:

               AB là tia phân giác của góc HAD  

Suy ra: \(\widehat {DAB} = \widehat {BAH}\)

                  AC là tia phân giác của góc HAE

Suy ra: \(\widehat {HAC} = \widehat {CAE}\)

Ta có: \(\widehat {HAD} + \widehat {HAE} = 2(\widehat {BAH} + \widehat {HAC}) = 2.\widehat {BAC} = 2.90^\circ  = 180^\circ \)

Advertisements (Quảng cáo)

Vậy ba điểm D, A, E thẳng hàng.

b) Gọi M là trung điểm của BC

Theo tính chất của tiếp tuyến, ta có:

\(AD \bot BD;AE \bot CE\)

Suy ra: BD // CE

Vậy tứ giác BDEC là hình thang

Khi đó MA là đường trung bình của hình thang BDEC

Suy ra: \(MA // BD  \Rightarrow MA \bot DE\)

Trong tam giác vuông ABC ta có: MA = MB = MC

Suy ra M là tâm đường tròn đường kính BC với MA là bán kính

Vậy DE là tiếp tuyến của đường tròn tâm M đường kính BC.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)