Cho tam giác ABC vuông tại A. Đường tròn (O) nội tiếp tam giác ABC tiếp xúc với AB, AC lần lượt tại D, E.
a) Tứ giác ADOE là hình gì? Vì sao?
b) Tính bán kính của đường tròn (O) biết AB = 3cm, AC = 4cm
a) Ta có: \(OD \bot AB \Rightarrow \widehat {ODA} = 90^\circ \)
\(OE \bot AC \Rightarrow \widehat {OEA} = 90^\circ \)
\(\widehat {BAC} = 90^\circ \) (gt)
Tứ giác ADOE có ba góc vuông nên nó là hình chữ nhật
Lại có: AD = AE (tính chất hai tiếp tuyến giao nhau)
Vậy tứ giác ADOE là hình vuông.
b) Áp dụng định lí Pi-ta-go vào tam giác vuông ABC ta có:
\(B{C^2} = A{B^2} + A{C^2} = {3^2} + {4^2} = 25\)
Advertisements (Quảng cáo)
Suy ra: BC = 5 (cm)
Theo tính chất tiếp tuyến giao nhau ta có:
AD = AE
BD = BF
CE = CF
Mà: AD = AB – BD
AE = AC – CF
Suy ra: AD + AE = AB – BD + (AC – CF )
= AB + AC – (BD + CF )
= AB + AC – (BF + CF )
= AB + AC – BC
Suy ra: \( AD = AE = {{AB + AC - BC} \over 2} = {{3 + 4 - 5} \over 2} = 1 (cm)\)