Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 60 trang 110 SBT Toán lớp 9 Tập 2: Tính độ...

Câu 60 trang 110 SBT Toán lớp 9 Tập 2: Tính độ dài đường tròn ngoại tiếp tam giác...

Tính độ dài đường tròn ngoại tiếp tam giác đó.. Câu 60 trang 110 Sách Bài Tập (SBT) Toán 9 Tập 2 - Bài 9. Độ dài đường tròn cung tròn

Cho tam giác cân ABC có \(\widehat B = {120^0}\), AC = 6cm. Tính độ dài đường tròn ngoại tiếp tam giác đó.

Giải

∆ABC cân có \(\widehat B\) = 1200 nên ∆ABC cân tại B

\( \Rightarrow \widehat A = \widehat C = {{{{180}^0} - {{120}^0}} \over 2} = {30^0}\)

Kẻ \(BH \bot AC \Rightarrow AH = HC = {1 \over 2}AC = 3\) (cm)

Trong tam giác vuông BHA ta có \(\widehat {BHA} = {90^0}\)

\(AB = {{AH} \over {\cos A}} = {3 \over {\cos {{30}^0}}} = {3 \over {{{\sqrt 3 } \over 2}}} = 2\sqrt 3 \) (cm)

Advertisements (Quảng cáo)

\(\widehat C = {1 \over 2}\widehat {AOB}\) (hệ quả góc nội tiếp)

\( \Rightarrow \widehat {AOB} = 2\widehat C = {2.30^0} = {60^0}\)

OA = OB (bán kính)

Suy ra ∆AOB đều nên OA = OB = \(2\sqrt 3 \)  (cm)

Độ dài đường tròn ngoại tiếp ∆ABC

C = \(2\pi R\)

\(C = 2\pi .2\sqrt 3  = 4\pi \sqrt 3 \) (cm)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)