a) Chứng mình:
\({x^2} + x\sqrt 3 + 1 = {\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4}\)
b) Tìm giá trị nhỏ nhất của biểu thức: \({x^2} + x\sqrt 3 + 1\). Giá trị đó đạt được khi x bằng bao nhiêu?
Gợi ý làm bài
a) Ta có:
\({x^2} + x\sqrt 3 + 1 = {x^2} + 2x{{\sqrt 3 } \over 2} + {3 \over 4} + {1 \over 4}\)
\(\eqalign{
& = {x^2} + 2x{{\sqrt 3 } \over 2} + {\left( {{{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4} \cr
& = {\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4} \cr} \)
Advertisements (Quảng cáo)
Vế trái bằng vế phải nên đẳng thức được chứng minh.
b) Ta có:
\({x^2} + x\sqrt 3 + 1 = {\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4}\)
Vì \({\left( {x + {{\sqrt 3 } \over 2}} \right)^2} \ge 0\) với mọi x nên \({\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4} \ge {1 \over 4}\)
Giá trị biểu thức \({\left( {x + {{\sqrt 3 } \over 2}} \right)^2} + {1 \over 4}\) bằng \({1 \over 4}\) khi \({\left( {x + {{\sqrt 3 } \over 2}} \right)^2} = 0\)
Suy ra: \(x = - {{\sqrt 3 } \over 2}.\)