Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 86 trang 120 SBT Toán 9 Tập 1: Tính diện tích...

Câu 86 trang 120 SBT Toán 9 Tập 1: Tính diện tích tam giác...

Tính diện tích tam giác . Câu 86 trang 120 Sách Bài Tập (SBT) Toán 9 Tập 1 - Ôn tập chương I

Cho hình 32. 

Biết:

\(AD \bot DC,\widehat {DAC} = 74^\circ \)

\(\widehat {AXB} = 123^\circ ,AD = 2,8\,cm\)

AX = 5,5cm, BX = 4,1cm.

a) Tính AC.

b) Gọi Y là điểm trên AX sao cho DY ⁄⁄ BX. Hãy tính XY

c) Tính diện tích tam giác BCX

Gợi ý làm bài

a) Trong tam giác vuông ACD, ta có:

\(AC = {{AD} \over {\cos \widehat {CAD}}} = {{2,8} \over {\cos 74^\circ }} \approx 10,158\,(cm)\)

b) Kẻ \(DN \bot AC\)

Trong tam giác vuông AND, ta có:

\(\eqalign{
& DN = AD.\sin \widehat {DAN} \cr
& = 2,8.\sin 74^\circ \approx 2,692\,(cm) \cr} \)

\(\eqalign{
& AN = AD.\cos \widehat {DAN} \cr
& = 2,8.\cos 74^\circ \approx 0,772\,(cm) \cr} \)

Vì BX // DY nên \(\widehat {D{\rm{YX}}} = \widehat {BXY} = 123^\circ \) ( hai góc so le trong)

Advertisements (Quảng cáo)

Mà \(\widehat {DYN} + \widehat {D{\rm{YX}}} = 180^\circ \) (kề bù)

Suy ra:

\(\widehat {DYN} = 180^\circ  - \widehat {D{\rm{YX}}} = 180^\circ  - 123^\circ  = 57^\circ \)

Trong tam giác vuông DYN, ta có:

\(\eqalign{
& NY = DN.\cot g\widehat {DYN} \cr
& \approx 2,692.\cot g57^\circ \approx 1,748\,(cm) \cr} \)

Ta có: 

\(\eqalign{
& XY = AX - (AN + NY) \cr
& = 5,5 - (0,772 + 1,748) = 2,98\,(cm) \cr} \)

c) Ta có:

\(CX = AC - AX \approx 10,158 - 5,5 = 4,658\,(cm)\)

Kẻ \(BM \bot CX\)

Ta có:

\(\widehat {BXC} = 180^\circ  - \widehat {BXA} = 180^\circ  - 123^\circ  = 57^\circ \)

Trong tam giác vuông BMX, ta có:

\(\eqalign{
& BM = BX.\sin \widehat {BXC} \cr
& = 4,1.\sin 57^\circ \approx 3,439\,(cm) \cr} \)

\(\eqalign{
& {S_{BCX}} = {1 \over 2}BM.CX \cr
& = {1 \over 2}.3,439.4,658 = 8,009\,\left( {c{m^2}} \right). \cr} \)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây: