Trang chủ Lớp 9 SBT Toán lớp 9 (sách cũ) Câu 98 trang 122 SBT Toán 9 Tập 1: Cho tam giác...

Câu 98 trang 122 SBT Toán 9 Tập 1: Cho tam giác AB = 6cm, AC = 4,5cm, BC = 7,5cm...

Cho tam giác AB = 6cm, AC = 4,5cm, BC = 7,5cm. Câu 98 trang 122 Sách Bài Tập (SBT) Toán 9 Tập 1 - Ôn tập chương I

Cho tam giác AB = 6cm, AC = 4,5cm, BC = 7,5cm.

a) Chứng minh tam giác ABC vuông tại A. tính các góc \(\widehat B,\widehat C\). Chứng minh tam giác ABC vuông tại A. tính các góc  và đường cao AH của tam giác.

b) Tìm tập hợp các điểm M sao cho \({S_{ABC}} = {S_{BMC}}.\)

Gợi ý làm bài

a) Ta có:

\(A{B^2} = {6^2} = 36\)

\(A{C^2} = 4,{5^2} = 20,25\)

\(B{C^2} = 7,{5^2} = 56,25\)

Vì \(A{B^2} + A{C^2} = 36 + 20,25 = 56,25 = B{C^2}\) nên tam giác ABC vuông tại A ( theo định lí Pi-ta-go).

Advertisements (Quảng cáo)

Kẻ \(AH \bot BC\)

Ta có: \(AH = {{AB.AC} \over {BC}} = {{6.4,5} \over {7,5}} = 3,6\,(cm)\)

\(\sin \widehat C = {{AC} \over {BC}} = {{4,5} \over {7,5}} = 0,6\)

Suy ra: \(\widehat C = 58^\circ 8’\)

Ta có:

\(\widehat B + \widehat C = 90^\circ  \Rightarrow B = 90^\circ  - \widehat C = 90^\circ  - 53^\circ 8′ = 36^\circ 52’\)

b) Tam giác ABC và tam giác MBC có chung cạnh đáy BC, đồng thời \({S_{ABC}} = {S_{MBC}}\)  nên khoảng cách từ M đến BC bằng khoảng cách từ A đến BC. Vậy M thay đổi cách BC một khoảng bằng AH nên M nằm trên hai đường x và y song song với BC cách BC một khoảng bằng AH.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)