Trang chủ Lớp 9 Tài liệu Dạy - học Toán 9 (sách cũ) Bài 9 trang 87 Tài liệu dạy – học Toán 9 tập...

Bài 9 trang 87 Tài liệu dạy – học Toán 9 tập 1: Cho nửa đường tròn (O) có đường kính AB = 2R. Vẽ bán kính OC vuông góc với AB, gọi M là...

Bài tập - Chủ đề 2 : Tỉ số lượng giác của góc nhọn - Bài 9 trang 87 Tài liệu dạy – học Toán 9 tập 1. Giải bài tập Cho nửa đường tròn (O) có đường kính AB = 2R. Vẽ bán kính OC vuông góc với AB, gọi M là

Cho nửa đường tròn (O) có đường kính AB = 2R. Vẽ bán kính OC vuông góc với AB, gọi M là một điểm nằm trên OC sao cho \(\tan \widehat {OAM} = \dfrac{3}{4}\), AM cắt nửa đường tròn tại D. Tính các đoạn AM, AD, BD theo R.

Sử dụng các tỉ số lượng giác, tỉ lệ đồng dạng và định lý Pythagore để tính.

Xét tam gác OAM vuông tại O có:

\(\tan \widehat {OAM} = \dfrac{{OM}}{{OA}} = \dfrac{3}{4} \)

\(\Rightarrow OM = \dfrac{3}{4}OA = \dfrac{3}{4}R\)

Advertisements (Quảng cáo)

Áp dụng định lý Pythagore vào tam giác OAM vuông tại O:

\(A{M^2} = O{A^2} + O{M^2}\)

\(\Rightarrow AM = \sqrt {O{A^2} + O{M^2}} \)\(\, = \sqrt {{R^2} + \dfrac{9}{{16}}{R^2}}  = \dfrac{5}{4}R\)

D là một điểm trên nửa đường tròn (O) \( \Rightarrow \widehat {ADB} = {90^o}\) (góc nội tiếp chắn nửa đường tròn)

Xét hai tam giác OAM và DAB có:

+) \(\widehat A\) chung;

+) \(\widehat {AOM} = \widehat {ADB} = {90^o}\)

\( \Rightarrow \)Hai tam giác OAM và DAB đồng dạng

\(\begin{array}{l} \Rightarrow \dfrac{{AM}}{{AB}} = \dfrac{{OA}}{{AD}} = \dfrac{{OM}}{{BD}}\\ \Rightarrow AD = \dfrac{{OA.AB}}{{AM}} = \dfrac{{R.2R}}{{\dfrac{5}{4}R}} = \dfrac{8}{5}R\\ BD = \dfrac{{OM.AB}}{{AM}} = \dfrac{{\dfrac{3}{4}R.2R}}{{\dfrac{5}{4}R}} = \dfrac{6}{5}R\end{array}\)

Bạn đang xem bài tập, chương trình học môn Tài liệu Dạy - học Toán 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)