Trang chủ Lớp 9 Tài liệu Dạy - học Toán 9 (sách cũ) Hoạt động 2 trang 61 Tài liệu dạy – học Toán 9...

Hoạt động 2 trang 61 Tài liệu dạy – học Toán 9 tập 2: Cho phương trình chứa ẩn ở mẫu sau:...

1. Phương trình quy về phương trình bậc hai - Hoạt động 2 trang 61 Tài liệu dạy – học Toán 9 tập 2. Giải bài tập Cho phương trình chứa ẩn ở mẫu sau:

Cho phương trình chứa ẩn ở mẫu sau: \(\dfrac{{x - 1}}{{x + 1}} + \dfrac{1}{{x - 1}} = \dfrac{4}{{{x^2} - 1}}\)

a) Tìm điều kiện xác định của phương trình

b) Quy đồng hai vế rồi khử mẫu thức

c) Giải phương trình vừa nhận được.

d) Đối chiếu điều kiện xác định với các kết quả vừa tìm được và kết luận nghiệm.

\(\dfrac{{x - 1}}{{x + 1}} + \dfrac{1}{{x - 1}} = \dfrac{4}{{{x^2} - 1}}\)

a) Điều kiện xác định của phương trình: \(\left\{ \begin{array}{l}x + 1 \ne 0\\x - 1 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ne  - 1\\x \ne 1\end{array} \right.\)

Advertisements (Quảng cáo)

b)

\(\begin{array}{l}\dfrac{{x - 1}}{{x + 1}} + \dfrac{1}{{x - 1}} = \dfrac{4}{{{x^2} - 1}}\\ \Leftrightarrow \dfrac{{\left( {x - 1} \right)\left( {x - 1} \right) + \left( {x + 1} \right)}}{{\left( {x + 1} \right)\left( {x - 1} \right)}} = \dfrac{4}{{\left( {x + 1} \right)\left( {x - 1} \right)}}\\ \Leftrightarrow \left( {x - 1} \right)\left( {x - 1} \right) + \left( {x + 1} \right) = 4\end{array}\)

c) Phương trình trở thành:

\(\begin{array}{l}\left( {x - 1} \right)\left( {x - 1} \right) + \left( {x + 1} \right) = 4\\ \Leftrightarrow {x^2} - 2x + 1 + x + 1 - 4 = 0\\ \Leftrightarrow {x^2} - x - 2 = 0;\\\,\,a = 1;b =  - 1;c =  - 2\\a - b + c = 1 + 1 - 2 = 0\end{array}\)

Khi đó phương trình có hai nghiệm phân biệt là: \({x_1} =  - 1;{x_2} =  - \dfrac{c}{a} = 2\)

d) Ta thấy \( x = -1\) (không thỏa mãn điều kiện)

\(x = 2\) (thỏa mãn điều kiện)

Vậy phương trình có 1 nghiệm duy nhất là \(x = 2.\)

Bạn đang xem bài tập, chương trình học môn Tài liệu Dạy - học Toán 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)