Cho A, B, C là ba điểm của một đường tròn. Bài 33 trang 80 sgk Toán lớp 9 tập 2 - Bài 4. Góc tạo bởi tia tiếp tuyến và dây cung
Bài 33. Cho A,B,C là ba điểm của một đường tròn. At là tiếp tuyến của đường tròn tại A. Đường thẳng song song với At cắt Ab tại M và cắt AC tại N.
Chứng minh: AB.AM=AC.AN
Hướng dẫn giải:
Ta có ˆM=^BAt (so le trong) (1)
^BAt=ˆC (2)
(góc tạo bởi tiếp tuyến và dây cung, chắn cung AB, ˆC là góc nội tiếp chắn cung AB)
Advertisements (Quảng cáo)
Từ (1) và (2) suy ra:
ˆM=ˆC (3)
Xét hai tam giác AMN và ACB. chúng có:
ˆA chung
ˆM=ˆC
Vậy ∆AMN đồng dạng ∆ACB, từ đó {{AN} \over {AB}} = {{AM} \over {AC}},
suy ra AB. AM = AC . AN