Trang chủ Lớp 9 Toán lớp 9 (sách cũ) Bài 36 trang 82 sgk Toán lớp 9 tập 2, Bài 36....

Bài 36 trang 82 sgk Toán lớp 9 tập 2, Bài 36. Cho đường tròn (O) và hai dây AB, AC...

Bài 36. Cho đường tròn (O) và hai dây AB, AC. Bài 36 trang 82 sgk Toán lớp 9 tập 2 - Bài 5. Góc có đỉnh ở bên trong đường tròn. Góc có đỉnh ở bên ngoài đường tròn

Bài 36. Cho đường tròn \((O)\) và hai dây \(AB\), \(AC\). Gọi \(M, N\) lần lượt là điểm chính giữa của cung \(AB\) và cung \(AC\). Đường thẳng \(MN\) cắt dây \(AB\) tại \(E\) và cắt dây \(AC\) tại \(H\). Chứng minh rằng tam giác \(AEH\) là tam giác cân.

Hướng dẫn giải:

Ta có: \(\widehat {AHM}\)= \(\frac{sđ\overparen{AM}+sđ\overparen{NC}}{2}\)     (1)

           \(\widehat {AEN}\)= \(\frac{sđ\overparen{MB}+sđ\overparen{AN}}{2}\)           (2)

Advertisements (Quảng cáo)

(Vì  \widehat {AHM}\)và  \(\widehat {AEN}\)là các góc có đỉnh cố định ở bên trong đường tròn).

Theo gỉả thiết thì:

\(\overparen{AM}=\overparen{MB}   (3)\)

\(\overparen{NC}=\overparen{AN}    (4)\)

Từ (1),(2), (3), (4), suy ra \(\widehat {AHM}\)= \(\widehat {AEN}\) do đó \(∆AEH\) là tam giác cân.

Bạn đang xem bài tập, chương trình học môn Toán lớp 9 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)