Trang chủ Lớp 9 Vở thực hành Toán 9 (Kết nối tri thức) Câu hỏi trắc nghiệm trang 101 vở thực hành Toán 9: Cho...

Câu hỏi trắc nghiệm trang 101 vở thực hành Toán 9: Cho Hình 5.7. Khẳng định nào sau đây là đúng?...

Trong một đường tròn, đường kính là dây lớn nhất. Phân tích và giải Câu 1, 2, 3, 4 - Bài hỏi trắc nghiệm trang 101 vở thực hành Toán 9 - Bài 14. Cung và dây của một đường tròn. Cho đường tròn (O) có bán kính bằng 12cm. Khi đó, dây lớn nhất của đường tròn (O; 12cm) có độ dài bằng A. 6cm. B. 36cm. C. 12cm. D. 24cm...

Chọn phương án đúng cho mỗi câu sau:

Câu 1

Cho đường tròn (O) có bán kính bằng 12cm. Khi đó, dây lớn nhất của đường tròn (O; 12cm) có độ dài bằng

A. 6cm.

B. 36cm.

C. 12cm.

D. 24cm.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Trong một đường tròn, đường kính là dây lớn nhất.

Answer - Lời giải/Đáp án

Dây lớn nhất của đường tròn (O; 12cm) là đường kính nên dây lớn nhất có độ dài là: 2.12=24(cm)

Chọn D


Câu 2

Cho đường tròn (O; R) và điểm M nằm trong đường tròn (O). Kẻ dây AB của đường tròn (O) nhận M làm trung điểm. Biết \(R = 5cm\) và \(OM = 1,4cm\). Độ dài dây AB là

A. 9,5cm.

B. 9,6cm.

C. 9,8cm.

D. 9cm.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

+ Chứng minh tam giác AOB cân tại O, suy ra OM là đường trung tuyến đồng thời là đường cao.

+ Áp dụng định lý Pythagore vào tam giác OMB vuông tại M ta tính được MB.

+ \(AB = 2MB\).

Answer - Lời giải/Đáp án

Tam giác AOB có \(OA = OB\) (bán kính (O)) nên tam giác AOB cân tại O. Do đó, OM là đường trung tuyến đồng thời là đường cao.

Áp dụng định lý Pythagore vào tam giác OMB vuông tại M có: \(M{B^2} + O{M^2} = O{B^2}\)

Suy ra \(MB = \sqrt {O{B^2} - O{M^2}} = \sqrt {{5^2} - {{1,4}^2}} = 4,8\left( {cm} \right)\)

Do đó, \(AB = 2MB = 2.4,8 = 9,6\left( {cm} \right)\)

Advertisements (Quảng cáo)

Chọn B


Câu 3

Cho Hình 5.7. Khẳng định nào sau đây là đúng?

A. Cung AmB bị chắn bởi góc ở tâm AOB.

B. Góc ở tâm AOC chắn cung AB.

C. Cung AmB bị chắn bởi góc ở tâm BOC.

D. Góc ở tâm AOC chắn cung BC.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Quan sát hình và rút ra kết luận.

Answer - Lời giải/Đáp án

Cung AmB bị chắn bởi góc ở tâm AOB.

Chọn A


Câu 4

Cho đường tròn (O; R), vẽ dây \(AB = \sqrt 2 R\) (H.5.8). Số đo của cung AmB là

A. \({45^o}\).

B. \({90^o}\).

C. \({270^o}\).

D. \({60^o}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

Trong một đường tròn, số đo cung nhỏ bằng số đo của góc ở tâm chắn cung đó.

Answer - Lời giải/Đáp án

Vì A, B thuộc (O) nên \(OA = OB = R\)

Ta có: \(A{B^2} = O{A^2} + O{B^2}\) nên tam giác OAB vuông tại O. Do đó, \(\widehat {AOB} = {90^o}\)

Vì góc ở tâm AOB chắn cung AmB nên \(sđ\overset\frown{AmB}=\widehat{AOB}={{90}^{o}}\)

Chọn B

Advertisements (Quảng cáo)