Câu 1.34 trang 12 SBT Đại số 10 Nâng cao. Bài 3. Tập hợp và các phép toán trên tập hợp
Chứng minh rằng √6 là số vô tỉ.
Chứng minh bằng phản chứng. Giả sử √6=ab là một số hữu tỉ trong đó a, b là hai số nguyên dương và (a,b)=1. Suy ra 6b2=a2 . Vậy a2 chia hết cho 2 và chia hết cho 3 tức là a chia hết cho 6.
Advertisements (Quảng cáo)
Đặt a=6k(k∈N∗) . Thay vào ta được 6b2=36k2 hay b2=6k2 . Lí luận tương tự như trên ta suy ra b chia hết cho 6. Vậy a và b có ước chung là 6. Điều này mâu thuẫn với giả thiết a, b không có ước chung lớn hơn 1.