Trang chủ Lớp 10 SBT Toán lớp 10 (sách cũ) Bài 3.25 trang 152 Sách bài tập Toán Hình học 10: Cho...

Bài 3.25 trang 152 Sách bài tập Toán Hình học 10: Cho đường tròn (C)...

Cho đường tròn (C) : Bài 3.25 trang 152 Sách bài tập (SBT) Toán Hình học 10 - Bài 2: Phương trình đường tròn

Cho đường tròn (C) : \({(x + 1)^2} + {(y - 2)^2} = 9\) và điểm M(2;-1).

a) Chứng tỏ rằng qua M ta vẽ được hai tiếp tuyến \({\Delta _1}\) và \({\Delta _2}\) với (C), hãy viết phương trình của \({\Delta _1}\) và \({\Delta _2}\).

b) Gọi \({M_1}\) và \({M_2}\) lần lượt là hai tiếp điểm của  \({\Delta _1}\) và \({\Delta _2}\) với (C) , hãy viết phương trình của đường thẳng d đi qua \({M_1}\) và \({M_2}\)

Gợi ý làm bài

a) (C) có tâm I(-1;2) và có bán kính R = 3. Đường thẳng  đi qua M(2;-1) và có hệ số góc k có phương trình: 

\(y + 1 = k\left( {x - 2} \right) \Leftrightarrow kx - y - 2k - 1 = 0\)

Ta có: \(\Delta \) tiếp xúc với (C)  \( \Leftrightarrow d(I;\Delta ) = R\)

\( \Leftrightarrow {{\left| { - k - 2 - 2k - 1} \right|} \over {\sqrt {{k^2} + 1} }} = 3\)

\(\Leftrightarrow \left| {k + 1} \right| = \sqrt {{k^2} + 1} \)

\(\Leftrightarrow {k^2} + 2k + 1 = {k^2} + 1\)

Advertisements (Quảng cáo)

\( \Leftrightarrow k = 0.\)

Vậy ta được tiếp tuyến \({\Delta _1}:y + 1 = 0.\)

Xét đường thẳng \({\Delta _2}\) đo qua M(2;-1) và vuông góc với Ox, \({\Delta _2}\) có phương trình x - 2 = 0. Ta có:

\(d\left( {I;{\Delta _2}} \right) = \left| { - 1 - 2} \right| = 3 = R\)

Suy ra \({\Delta _2}\) tiếp xúc với (C) . 

Vậy qua điểm M ta vẽ được hai tiếp tuyến với  (C), đó là: 

\({\Delta _1}:y + 1 = 0\) và \({\Delta _2}:x - 2 = 0\)

b) \({\Delta _1}\) tiếp xúc với (C)  tại \({M_1}\left( { - 1; - 1} \right)\)

\({\Delta _2}\) tiếp xúc với (C)  tại \({M_2}\left( {2;2} \right)\)

Phương trình của đường thẳng d đi qua \({M_1}\) và \({M_2}\) là: x - y = 0.

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)