Cho ba điểm A(2;1), B(0;5), C(-1;-10).
a) Tìm tọa độ trọng tâm G, trực tâm H và tâm I đường tròn ngoại tiếp tam giác ABC.
b) Chứng minh I, G, H thẳng hàng.
c) Viết phương trình đường tròn ngoại tiếp tam giác ABC.
Gợi ý làm bài
a) + Trọng tâm \(G\left( { - 1; - {4 \over 3}} \right)\)
+ Tọa độ trực tâm H(x;y)
\(\eqalign{
& \overrightarrow {AH} (x - 2;y - 1) \cr
& \Rightarrow \overrightarrow {AH} .\overrightarrow {BC} = (x - 2).( - 5) + (y - 1).( - 15) \cr} \)
\(\eqalign{
& \overrightarrow {BH} = (x;y - 5) \cr
& \Rightarrow \overrightarrow {BH} .\overrightarrow {CA} = x.( - 7) + (y - 5).( - 11) \cr} \)
Do là trực tâm
\(\eqalign{
& \Leftrightarrow \left\{ \matrix{
\overrightarrow {AH} .\overrightarrow {BC} = 0 \hfill \cr
\overrightarrow {BH} .\overrightarrow {CA} = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
(x - 2).( - 5) + (y - 1).( - 15) = 0 \hfill \cr
x.( - 7) + (y - 5).( - 11) = 0 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x = 11 \hfill \cr
y = - 2 \hfill \cr} \right. \cr} \)
Advertisements (Quảng cáo)
+ Tọa độ tâm đường tròn ngoại tiếp I(x;y)
\(AI_{}^2 = (x - 2)_{}^2 + (y - 1)_{}^2\)
\(BI_{}^2 = x_{}^2 + (y - 5)_{}^2\)
\(CI_{}^2 = (x + 5)_{}^2 + (y + 10)_{}^2\)
Ta có:
\(\eqalign{
& AI_{}^2 = BI_{}^2 = CI_{}^2 \Leftrightarrow \left\{ \matrix{
AI_{}^2 = BI_{}^2 \hfill \cr
BI_{}^2 = CI_{}^2 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
(x - 2)_{}^2 + (y - 1)_{}^2 = x_{}^2 + (y - 5)_{}^2 \hfill \cr
x_{}^2 + (y - 5)_{}^2 = (x + 5)_{}^2 + (y + 10)_{}^2 \hfill \cr} \right. \cr
& \Leftrightarrow \left\{ \matrix{
x = - 7 \hfill \cr
y = - 1 \hfill \cr} \right. \cr} \)
b) Ta có: \(\overrightarrow {IH} (18; - 1)\), \(\overrightarrow {IG} \left( {6; - {1 \over 3}} \right)\)
\( \Rightarrow \overrightarrow {IH} = 3\overrightarrow {IG} \) suy ra I,G,H thẳng hàng.
c) Ta có:
\(R = IA = \sqrt {( - 7 - 2)_{}^2 + ( - 1 - 1)_{}^2} = \sqrt {85} \)
Phương trình đường tròn ngoại tiếp tam giác ABC là: \((x + 7)_{}^2 + (y + 1)_{}^2 = 85\)