Chứng minh rằng. Bài 62 trang 124 Sách bài tập (SBT) Toán Đại số 10 - Bài tập ôn tập chương IV
Chứng minh rằng:
\(a + b + b \le {1 \over 2}({a^2}b + {b^2}c + {c^2}a + {1 \over a} + {1 \over b} + {1 \over c}).\)
Với a, b, c là những số dương tùy ý.
Gợi ý làm bài
Theo bài 7 ta có:
Advertisements (Quảng cáo)
\({a^2}b + {1 \over b} \ge 2a\), do đó
\(a \le {1 \over 2}({a^2}b + {1 \over b})\)
Tương tự: \(b \le {1 \over 2}({b^2}c + {1 \over c})\)
\(c \le {1 \over 2}({c^2}a + {1 \over a})\)
Cộng từng vế ba bất đẳng thức này ta được điều phải chứng minh.