Trang chủ Lớp 10 SBT Toán lớp 10 (sách cũ) Bài 65 trang 125 Sách bài tập (SBT) Toán Đại số 10:...

Bài 65 trang 125 Sách bài tập (SBT) Toán Đại số 10: Tìm a và b để bất phương trình...

Tìm a và b để bất phương trình. Bài 65 trang 125 Sách bài tập (SBT) Toán Đại số 10 - Bài tập ôn tập chương IV

Tìm a và b để bất phương trình

\((x - 2a + b - 1)(x + a - 2b + 1) \le 0\)

Có tập nghiệm là đoạn [0;2].

Gợi ý làm bài

Tập nghiệm của bất phương trình đã cho là đoạn \({\rm{[}}2a - b + 1; - a + 2b - 1]\) (nếu \(2a - b + 1 \le  - a + 2b - 1\)) hoặc là đoạn \({\rm{[}} - a + 2b - 1;2a - b + 1]\) (nếu \( - a + 2b - 1 \le 2a - b - 1\))

Do đó để tập nghiệm của bất phương trình đã cho là đoạn [0;2], điều kiện cần và đủ là:

Advertisements (Quảng cáo)

\((1)\,\left\{ \matrix{
2a - b + 1 = 2 \hfill \cr
- a + 2b - 1 = 0 \hfill \cr} \right.\)

hoặc 

\((2)\,\left\{ \matrix{
2a - b + 1 = 0 \hfill \cr
- a + 2b - 1 = 2. \hfill \cr} \right.\)

Giải (1) ta được a = b = 1. Giải hệ (2) ta được \(a = {1 \over 3},b = {5 \over 3}\)

Đáp số: a = b = 1 hoặc \(a = {1 \over 3},b = {5 \over 3}\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)