Một sợi dây thép AB và một sợi dây đồng CD có độ dài và tiết diện giống nhau. Đầu trên của mỗi dây được treo cố định vào giá đỡ tại hai điểm A và C, đầu dưới của chúng được buộc vào hai đầu B và D của một thanh rắn nằm ngang dài 0,80 m (Hình VII). Hỏi phải treo vật nặng P tại vị trí nào trên thanh BD để thanh này luôn nằm ngang ? Cho biết suất đàn hồi của thép là E1 = 19,6.1010 Pa, của đồng là E2 = 11,7.1010Pa. Giả thiết thành rắn BD không bị biến dạng.
Giả sử vật nặng được treo tại vị trí cách đầu B của thanh rắn một đoạn x. Khi đó ta có thể phân tích trọng lực \(\overrightarrow P \) tác dụng lên vật nặng thành hai lực thành phần \(\overrightarrow F_1 \) và \(\overrightarrow F_2 \) song song với . Lực tác dụng lên sợi dây thép tại điểm B và làm sợi dây thép dãn dài thêm một đoạn Δl1, lực \(\overrightarrow F_2 \) tác dụng lên sợi dây đồng tại điểm D và làm sợi dây đồng dãn dài thêm một đoạn Δl2. Vì sợi dây thép và sợi dây đồng có độ dài ban đầu l0 và tiết diện S giống nhau, nên theo định luật Húc, ta có :
\({F_1} = {E_1}{S \over {{l_0}}}\Delta {l_1}\) và \({F_2} = {E_2}{S \over {{l_0}}}\Delta {l_2}\)
Advertisements (Quảng cáo)
Muốn thanh rắn BD nằm ngang thì sợi dây thép và sợi dây đồng phải có độ dãn dài bằng nhau: Δl1 = Δl2. Thay điều kiện này vào F1 và F2 , ta được :
\({{{F_1}} \over {{F_2}}} = {{{E_1}} \over {{E_2}}}\)
Mặt khác theo quy tắc tổng hợp hai lực song song cùng chiều, ta có :
\({{{F_1}} \over {{F_2}}} = {{a - x} \over a}\)
Từ đó, ta suy ra : \(x = {{{E_2}a} \over {{E_1} + {E_2}}} = {{11,{{7.10}^{10}}.0,80} \over {19,{{6.10}^{10}} + 11,{{7.10}^{10}}}} \approx 30\left( {cm} \right)\)