Cho parabol \((P):{y^2} = {1 \over 2}x.\) Gọi M,N là hai điểm di động trên (P) sao cho \(OM \bot ON\) (M,N không trùng với O). Chứng minh rằng đường thẳng MN luôn đi qua một điểm cố định.
Giả sử \(M(2y_1^2\,;\,{y_1})\,\, \in \,\,(P)\,\,\,N(2y_2^2\,;\,{y_2})\,\, \in \,\,(P)\) trong đó \({y_1},\,{y_2}\, \ne 0\) và \({y_1} \ne \,{y_2}\) vì \(\overrightarrow {OM} .\,\overrightarrow {ON} = 0\) nên \(4y_1^2y_2^2 + {y_1}{y_2} = 0\)
suy ra \(4{y_1}{y_2} + 1 = 0\,\,\, \Leftrightarrow \,\,{y_1}{y_2} = - {1 \over 4}\)
Ta có \(\overrightarrow {MN} = \left( {2y_2^2 - 2y_1^2\,;\,{y_2} - {y_1}} \right) \)
\(= \left( {{y_2} - {y_1}} \right).\left( {2{y_2} + 2{y_1}\,;\,1} \right)\)
Vì \({y_1} \ne \,{y_2}\) nên vec tơ chỉ phương của đường thẳng MN là \((2{y_1} + 2{y_2}\,;\,1)\) .
Advertisements (Quảng cáo)
Do đó vec tơ pháp tuyến của MN là \(\overrightarrow n = (1\,;\, - 2{y_1} - 2{y_2})\)
Phương trình tổng quát của MN là
\(1.(x - 2y_1^2) - (2{y_1} + 2{y_2}).(y - {y_1}) = 0\)
Tìm giao điểm của MN với trục hoành bằng cách thay \(y=0\) vào (*) ta được
\(x - 2y_1^2 + 2y_1^2 + 2{y_1}{y_2} = 0\,\,\,\, \Leftrightarrow \,\,\,x = {1 \over 2}\)
Vậy MN đi qua điểm \(\left( {{1 \over 2}\,;\,0} \right)\) cố định.