Tính nghiệm gần đúng của hệ phương trình sau (chính xác đến hàng phần trăm):
a)
\(\left\{ \matrix{
\sqrt 3 x - y = 1 \hfill \cr
5x + \sqrt 2 y = \sqrt 3 \hfill \cr} \right.\)
b)
\(\left\{ \matrix{
4x + (\sqrt 3 - 1)y = 1 \hfill \cr
(\sqrt 3 + 1)x + 3y = 5 \hfill \cr} \right.\)
Đáp án
a) Ta có:
Advertisements (Quảng cáo)
\(\eqalign{
& D = \,\left|\matrix{
{\sqrt 3 } & -1 \cr
5 & {\sqrt 2 } \cr}\right|\, = \sqrt 6 + 5 \cr & {D_x} = \,\left|\matrix{1 & { - 1} \cr {\sqrt 3 } & {\sqrt 2 } \cr} \right|\, = \sqrt 2 + \sqrt 3 \cr & {D_y} = \,\left|\matrix{{\sqrt 3 } & 1 \cr 5 & {\sqrt 3 } \cr}\right |\, = - 2 \cr} \)
Hệ phương trịnh có nghiệm duy nhất (x, y) với:
\(\left\{ \matrix{
x = {{{D_x}} \over D} = {{\sqrt 2 + \sqrt 3 } \over {\sqrt 6 + 5}} \approx 0,42 \hfill \cr
y = {{{D_y}} \over D} = {{ - 2} \over {\sqrt 6 + 5}} \approx - 0,27 \hfill \cr} \right.\)
b) Ta có:
\(\eqalign{
& D = \left|\matrix{
4 & {\sqrt 3 - 1} \cr
{\sqrt 3 + 1} & 3 \cr} \right|\, = 12 - (3 - 1) = 10 \cr & {D_x} = \,\left|\matrix{1 & {\sqrt 3 - 1} \cr 5 & 3 \cr} \right|\, = 3 - 5(\sqrt 3 - 1) = 8 - 5\sqrt 3 \cr & {D_y} = \,\left|\matrix{4 & 1 \cr {\sqrt 3 + 1} & 5 \cr} \right |\, = 20 - (\sqrt 3 + 1) = 19 - \sqrt 3 \cr} \)
Hệ có nghiệm duy nhất là:
\(\left\{ \matrix{
x = {{8 - 5\sqrt 3 } \over {10}} \approx - 0,07 \hfill \cr
y = {{19 - \sqrt 3 } \over {10}} \approx 1,73 \hfill \cr} \right.\)