Trang chủ Lớp 10 Toán lớp 10 Nâng cao (sách cũ) Bài 39 trang 97 SGK Đại số 10 nâng cao, Giải và...

Bài 39 trang 97 SGK Đại số 10 nâng cao, Giải và biện luận các hệ phương trình...

Giải và biện luận các hệ phương trình. Bài 39 trang 97 SGK Đại số 10 nâng cao - Bài 4: Hệ phương trình bậc nhất nhiều ẩn

Giải và biện luận các hệ phương trình

a)

\(\left\{ \matrix{
x + my = 1 \hfill \cr
mx - 3my = 2m + 3 \hfill \cr} \right.\)

b)

\(\left\{ \matrix{
mx + y = 4 - m \hfill \cr
2x + (m - 1)y = m \hfill \cr} \right.\)

a) Ta có:

\(\eqalign{& D = \,\left|\matrix{
1 & m \cr m & { - 3m} \cr}\right |\, = - 3m - {m^2} = - m(m + 3) \cr & {D_x} = \left|\matrix{1 & m \cr {2m + 3} & { - 3m} \cr} \right |\, = - 3m - m(2m + 3) \cr&\;\;\;\;\;\;= - 2m(m + 3) \cr & {D_y} = \left|\matrix{1 & 1 \cr m & {2m + 3} \cr}\right  |\, = \,2m + 3 - m = m + 3 \cr} \)

+Nếu D ≠ 0 ⇔ m ≠ 0 và m ≠ -3 nên hệ có nghiệm duy nhất là:

\(\left\{ \matrix{
x = {{{D_x}} \over D} = {{ - 2m(m + 3)} \over { - m(m + 3)}} = 2 \hfill \cr
y = {{{D_y}} \over D} = {{m + 3} \over { - m(m + 3)}} = - {1 \over m} \hfill \cr} \right.\) 

+ Nếu D = 0 

\( \Leftrightarrow \left[ \matrix{
m = 0 \hfill \cr
m = - 3 \hfill \cr} \right.\)

Advertisements (Quảng cáo)

i) Với m = 0, Dy = 3 ≠ 0: hệ vô nghiệm

ii) Với m = -3, hệ trở thành:

\(\left\{ \matrix{
x - 3y = 1 \hfill \cr
- 3x + 9y = - 3 \hfill \cr} \right. \Leftrightarrow y = {{x - 1} \over 3}\)

Hệ có vô số nghiệm \((x;\,{{x - 1} \over 3})\) ; x ∈ R

b) Ta có:

\(\eqalign{
& D = \,\left|\matrix{
m & 1 \cr
2 & {m - 1} \cr}\right  |\, = m(m - 1) - 2 \cr&\;\;\;\;= {m^2} - m - 2 = (m + 1)(m - 2) \cr & {D_x} = \,\left|\matrix{{4 - m} & 1 \cr m & {m - 1} \cr}\right  |\, = (4 - m)(m - 1) - m \cr&\;\;\;\;= - {m^2} + 4m - 4 = - {(m - 2)^2} \cr & {D_y} = \,\left|\matrix{m & {4 - m} \cr 2 & m \cr}\right  |\, = \,{m^2} - 2(4 - m)  \cr&\;\;\;\;= {m^2} + 2m - 8 = (m - 2)(m + 4) \cr} \)

+ Nếu D ≠ 0 ⇔ m ≠ -1 và m ≠ 2 nên hệ có nghiệm duy nhất là:

\(\left\{ \matrix{
x = {{{D_x}} \over D} = {{ - {{(m - 2)}^2}} \over {(m + 1)(m - 2)}} = {{ - m + 2} \over {m + 1}} \hfill \cr
y = {{{D_y}} \over D} = {{(m + 4)(m - 2)} \over {(m + 1)(m - 2)}} = {{m + 4} \over {m + 1}} \hfill \cr} \right.\)

+ Nếu D = 0 ⇔ m = -1 hoặc m = 2

i) m = -1; Dx ≠ 0. Hệ vô nghiệm

ii) m = 2, thế y = 2 – 2x. Hệ có vô số nghiệm (x; 2 – 2x); x ∈ R

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)