Cho tam giác ABC có \(a = 12,\,b = 16,\,c = 20\). Tính diện tích S, chiều cao \(h_a\), các bán kính R, r của đường tròn ngoại tiếp, nội tiếp tam giác đó.
Ta có \(p = {{a + b + c} \over 2} = {{12 + 16 + 20} \over 2} = 24\)
Advertisements (Quảng cáo)
Áp dụng công thức Hêrông, ta có
\(\eqalign{
& S = \sqrt {p(p - a)(p - b)(p - c)} = \sqrt {24.12.8.4} = 96 \cr
& S = {1 \over 2}a.{h_a}\,\,\, \Rightarrow {h_a} = {{2S} \over a} = {{2.96} \over {12}} = 16 \cr
& S = {{abc} \over {4R}}\,\,\,\,\,\, \Rightarrow \,R = {{abc} \over {4S}} = {{12.16.20} \over {4.96}} = 10 \cr
& S = pr\,\,\,\,\,\,\,\, \Rightarrow \,r = {S \over p} = {{96} \over {24}} = 4 \cr} \)