Trang chủ Lớp 10 Toán lớp 10 (sách cũ) Bài 2 trang 62 sgk đại số 10: Bài 2. Phương trình...

Bài 2 trang 62 sgk đại số 10: Bài 2. Phương trình quy về phương trình bậc nhất bậc hai...

Bài 2 trang 62 sgk đại số 10: Bài 2. Phương trình quy về phương trình bậc nhất bậc hai. Giải và biện luận các phương trình sau theo tham số m

Bài 2. Giải và biện luận các phương trình sau theo tham số \(m\)

a) \(m(x - 2) = 3x + 1\);

b) \(m^2x + 6 = 4x + 3m\);

c) \((2m + 1)x – 2m = 3x – 2\).

a) \(m(x - 2) = 3x + 1\)

\(⇔ (m – 3)x = 2m + 1\).

+) Nếu \(m ≠ 3\), phương trình có nghiệm duy nhất \(x = \frac{2m +1}{m-3}\).

+) Nếu \(m = 3\) phương trình trở thành \(0.x = 7\).

    Phương trình vô nghiệm.

b) \(m^2x + 6 = 4x + 3m\)

Advertisements (Quảng cáo)

\(⇔ (m^2– 4)x = 3m – 6\).

+) Nếu \(m^2– 4 ≠ 0 ⇔ m ≠ ± 2\), phương trình có nghiệm \(x = \frac{3m - 6}{m^{2}-4}=\frac{3}{m+2}\).

+) Nếu \(m = 2,\) phương trình trở thành \(0.x = 0\) đúng với mọi \(x ∈ \mathbb R\).

    Phương trình có vô số nghiêm.

+) Nếu \(m = -2\), phương trình trở thành \(0.x = -12\), phương trình vô nghiệm.

c) \((2m + 1)x – 2m = 3x – 2\)

\(⇔ 2(m – 1)x = 2(m-1)\).

+) Nếu \(m ≠ 1\), phương trình có nghiệm duy nhất \(x = 1\).

+) Nếu \(m = 1\), phương trình trở thành \(0.x=0\) đúng với mọi \(x ∈\mathbb R\).

    Phương trình có vô số nghiệm.

Bạn đang xem bài tập, chương trình học môn Toán lớp 10 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)