Bài 4. Chứng minh các đẳng thức
a) cos(a−b)cos(a+b)=cotacotb+1cotacotb−1
b) \sin(a + b)\sin(a - b) = \sin^2a – \sin^2b = \cos^2b – \cos^2a
c) \cos(a + b)\cos(a - b) = \cos^2a - \sin^2b = \cos^2b – \sin^2a
a) VT = {{\cos a\cos b+\sin a\sin b}\over{\cos a\cos b-\sin a\sin b}}=\frac{\frac{\cos a\cos b}{\sin a\sin b}+1}{\frac{\cos a\cos b}{\sin a\sin b}-1}=\frac{\cot a\cot b+1}{\cot a\cot b-1}
b) VT = [\sin a\cos b + \cos a\sin b][\sin a\cos b - \cos a\sin a]
Advertisements (Quảng cáo)
= (\sin a\cos b)^2– (\cos a\sin b)^2= \sin^2 a(1 – \sin^2 b) – (1 – \sin^2 a)\sin^2 b
= \sin^2a – \sin^2b = \cos^2b( 1– \cos^2a) – \cos^2 a(1 – \cos^2 b) = \cos^2 b – \cos^2 a
c) VT = (\cos a\cos b - \sin a\sin b)(\cos a\cos b + \sin a\sin b)
= (\cos a\cos b)^2 – (\sin a\sin b)^2
= \cos^2 a(1 – \sin^2 b) – (1 – \cos^2 a)\sin^2 b = \cos^2 a – \sin^2 b
= \cos^2 b(1 – \sin^2 a) – (1 – \cos^2 b)\sin^2 a = \cos^2 b – \sin^2 a