Cho dãy số \(\left( {{u_n}} \right)\) biết \({u_n} = \cos n\). Dãy số \(\left( {{u_n}} \right)\) là:
A. Dãy số tăng
B. Dãy số giảm
C. Dãy số bị chặn
D. Dãy số bị chặn dưới, không bị chặn trên
Advertisements (Quảng cáo)
Sử dụng định nghĩa về dãy số tăng, dãy số giảm, dãy số bị chặn.
Xét hiệu:
\(H = {u_{n + 1}} - {u_n} = \cos \left( {n + 1} \right) - \cos \left( n \right) = - 2\sin \left( {\frac{{n + 1 + n}}{2}} \right)\sin \left( {\frac{{n + 1 - n}}{2}} \right) = - 2\sin \frac{{2n + 1}}{2}\sin \frac{1}{2}\)
Với \(\forall n \in {\mathbb{N}^*}\), ta không thể xác định dấu của \(\sin \frac{{2n + 1}}{2}\), do đó không thể kết luận \(H > 0\) hay \(H
Mặt khác, do \( - 1 \le \cos n \le 1\) với \(\forall n \in {\mathbb{N}^*}\), dãy số \(\left( {{u_n}} \right)\) vừa bị chặn dưới, vừa bị chặn trên. Do đó dãy số \(\left( {{u_n}} \right)\) bị chặn.
Đáp án đúng là C.