Trang chủ Lớp 11 SBT Toán 11 - Cánh diều Bài 74 trang 33 SBT Toán 11 – Cánh diều: Chất điểm...

Bài 74 trang 33 SBT Toán 11 - Cánh diều: Chất điểm chuyển động một vòng hết bao nhiêu giây?...

Thời gian chất điểm chuyển động một vòng là chu kì của chất điểm đó. Lời Giải - Bài 74 trang 33 sách bài tập toán 11 - Cánh diều - Bài tập cuối chương I. Một chất điểm chuyển động đều theo chiều ngược chiều kim đồng hồ trên đường tròn bán kính 5 cm...Chất điểm chuyển động một vòng hết bao nhiêu giây?

Question - Câu hỏi/Đề bài

Một chất điểm chuyển động đều theo chiều ngược chiều kim đồng hồ trên đường tròn bán kính 5 cm. Khoảng cách \(h\) (cm) từ chất điểm đến trục hoành được tính theo công thức \(h = \left| y \right|\), trong đó \(y = a\sin \left( {\frac{\pi }{5}t} \right)\), với \(t\) là thời gian chuyển động của chất điểm tính bằng giây \(\left( {t \ge 0} \right)\) và chất điểm bắt đầu chuyển động từ vị trí \(A\) (Xem hình dưới)

a) Chất điểm chuyển động một vòng hết bao nhiêu giây?

b) Tìm giá trị của \(a\).

c) Tìm thời điểm sao cho chất điểm ở vị trí có \(h = 2,5\) cm và nằm phía dưới trục hoành trong một vòng quay đầu tiên.

Method - Phương pháp giải/Hướng dẫn/Gợi ý

a) Thời gian chất điểm chuyển động một vòng là chu kì của chất điểm đó.

Xét \(h = 0 \Leftrightarrow y = 0 \Leftrightarrow \sin \left( {\frac{\pi }{5}t} \right) = 0 \Leftrightarrow t = 5k\)\(\left( {k \in \mathbb{Z}} \right)\)

Nhận thấy \(k = 2\), ta thấy chất điểm và quay về vị trí\(A\). Do vậy, thời gian chất điểm chuyển động một vòng là 10 giây.

b) Do thời gian chất điểm chuyển động một vòng là 10 giây, nên sau 2,5 giây chất điểm chuyển động được một phần tư vòng tròn theo chiều dương. Như vậy tại \(t = 2,5\) ta có: \(a\sin \left( {\frac{\pi }{5}.\frac{5}{2}} \right) = 5 \Leftrightarrow a = 5\).

c) Yêu cầu đề bài tương đương với việc tìm \(t\) để \(y = 5\sin \left( {\frac{\pi }{5}t} \right) = - 2,5\).

Giải phương trình ẩn \(t\) và kết luận.

Answer - Lời giải/Đáp án

Advertisements (Quảng cáo)

a) Thời gian chất điểm chuyển động một vòng là chu kì của chất điểm đó.

Xét \(t = 0 \Rightarrow h = 0\), ta thấy chất điểm ở vị trí \(A\). Ta cần tìm thời gian gần nhất kể từ thời điểm \(t = 0\) (giây), chất điểm lại quay về vị trí \(A\).

Xét \(h = 0 \Leftrightarrow y = 0 \Leftrightarrow \sin \left( {\frac{\pi }{5}t} \right) = 0 \Leftrightarrow t = 5k\)\(\left( {k \in \mathbb{Z}} \right)\)

Với \(k = 1\), ta thấy chất điểm chuyển động được nửa vòng tròn.

Với \(k = 2\), ta thấy chất điểm chuyển động được một vòng tròn, và quay về vị trí\(A\).

Do vậy, thời gian chất điểm chuyển động một vòng là 10 giây.

b) Do thời gian chất điểm chuyển động một vòng là 10 giây, nên sau 2,5 giây chất điểm chuyển động được một phần tư vòng tròn theo chiều dương. Như vậy tại \(t = 2,5\) ta có: \(y = \left| y \right| = h = 5 \Leftrightarrow a\sin \left( {\frac{\pi }{5}.\frac{5}{2}} \right) = 5 \Leftrightarrow a\sin \left( {\frac{\pi }{2}} \right) = 5 \Leftrightarrow a = 5\).

\( \Rightarrow y = 5\sin \left( {\frac{\pi }{5}t} \right)\)

c) Ta cần tìm \(t\) để \(h = 2,5\)cm và ở dưới trục hoành nên \(y = - 2,5\).

\(5\sin \left( {\frac{\pi }{5}t} \right) = - 2,5 \Leftrightarrow \sin \left( {\frac{\pi }{5}t} \right) = - \frac{1}{2}\)

Ta thấy \(\sin \frac{{ - \pi }}{6} = - \frac{1}{2}\), phương trình ở trên tương đương với

\(\sin \left( {\frac{\pi }{5}t} \right) = \sin \frac{{ - \pi }}{6} \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{5}t = - \frac{\pi }{6} + k2\pi \\\frac{\pi }{5}t = \pi + \frac{\pi }{6} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}t = \frac{{ - 5 + 60k}}{6}\\t = \frac{{35 + 60k}}{6}\end{array} \right.\left( {k \in \mathbb{Z}} \right)\)

Vì ta chỉ xét vòng quay đầu tiên, nên \(0 \le t \le 10\). Do đó \(t = \frac{{35}}{6}\), \(t = \frac{{55}}{6}\)

Vậy tại thời điểm \(t = \frac{{35}}{6}\) giây, \(t = \frac{{55}}{6}\) giây, chất điểm cách trục hoành 2,5 cm và nằm ở dưới trục hoành.

Advertisements (Quảng cáo)