Khi gửi tiết kiệm \(P\) (đồng) theo thể thức trả lãi kép định kì với lãi suất mỗi kì là \(r\) ( \(r\) cho dưới dạng số thập phân) thì số tiền \(A\) (cả vốn lẫn lãi) nhận được sau \(t\) kì gửi là \(A = P{(1 + r)^t}\) (đồng). Tính thời gian gửi tiết kiệm cần thiết đề số tiền ban đầu tăng gấp đôi.
Sử dụng công thức lãi kép
Khi gửi tiết kiệm \(P\) (đồng) theo thể thức trả lãi kép định kì với lãi suất mỗi kì là \(r\) ( \(r\) cho dưới dạng số thập phân) thì số tiền \(A\) (cả vốn lẫn lãi) nhận được sau \(t\) kì gửi là \(A = P{(1 + r)^t}\) (đồng). Tính thời gian gửi tiết kiệm cần thiết đề số tiền ban đầu tăng gấp đôi.
Để số tiền ban đầu tăng gấp đôi thì \(A = 2P\).
Advertisements (Quảng cáo)
Thay \(A = 2P\) vào công thức lãi kép \(A = P{(1 + r)^t}\), suy ra \(t\)
Để số tiền ban đầu tăng gấp đôi thì \(A = 2P\).
Thay \(A = 2P\) vào công thức lãi kép ta có: \(2P = P{(1 + r)^t}\), suy ra:
\(2P = P{(1 + r)^t} \Leftrightarrow {(1 + r)^t} = 2 \Leftrightarrow t = {\log _{1 + r}}2\)