Trang chủ Lớp 11 SBT Toán 11 - Kết nối tri thức Bài 7.45 trang 42 SBT Toán 11 – Kết nối tri thức:...

Bài 7.45 trang 42 SBT Toán 11 - Kết nối tri thức: Cho tứ diện đều \(ABCD\) có cạnh bằng\(a\)...

Góc giữa 2 mặt phẳng cắt nhau là góc giữa 2 đường thẳng lần lượt nằm trên 2 mặt phẳng cùng vuông góc với giao tuyến của hai mặt phẳng. Giải - Bài 7.45 trang 42 sách bài tập toán 11 - Kết nối tri thức với cuộc sống - Bài tập cuối chương VII. Cho tứ diện đều \(ABCD\) có cạnh bằng\(a\), côsin của góc giữa hai mặt phẳng \(\left( {ACD} \right)\) và \(\left( {BCD} \right)\)bằng...

Question - Câu hỏi/Đề bài

Cho tứ diện đều \(ABCD\) có cạnh bằng\(a\), côsin của góc giữa hai mặt phẳng \(\left( {ACD} \right)\) và \(\left( {BCD} \right)\)bằng

A. \(\frac{2}{3}\).

B. \(\frac{{\sqrt 3 }}{2}\).

C. \(\frac{{\sqrt 3 }}{3}\).

D. \(\frac{1}{3}\).

Method - Phương pháp giải/Hướng dẫn/Gợi ý

- Góc giữa 2 mặt phẳng cắt nhau là góc giữa 2 đường thẳng lần lượt nằm trên 2 mặt phẳng cùng vuông góc với giao tuyến của hai mặt phẳng.

- Áp dụng hệ quả định lý côsin trong tam giác

Advertisements (Quảng cáo)

Answer - Lời giải/Đáp án

Ta có: \(\left( {ACD} \right) \cap \left( {BCD} \right) = CD\).

Gọi \(M\) là trung điểm \(CD\).

Khi đó dễ dàng chứng minh được \(BM \bot CD\) và \(AM \bot CD\).

\( \Rightarrow \left( {\left( {ACD} \right),\left( {BCD} \right)} \right) = \left( {AM,BM} \right)\).

Ta dễ tính được: \(AM = BM = \frac{{a\sqrt 3 }}{2}\).

Áp dụng hệ quả của định lý cô sin trong tam giác \(ABM\) ta có:

\(\cos \widehat {AMB} = \frac{{A{M^2} + B{M^2} - A{B^2}}}{{2.AM.BM}} = \frac{{\frac{{3{a^2}}}{4} + \frac{{3{a^2}}}{4} - {a^2}}}{{2.\frac{{a\sqrt 3 }}{2}.\frac{{a\sqrt 3 }}{2}}} = \frac{{\frac{{{a^2}}}{2}}}{{\frac{{3{a^2}}}{2}}} = \frac{1}{3}\).

Advertisements (Quảng cáo)