Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 1 trang 221 Sách bài tập Hình học 11 Nâng cao:...

Câu 1 trang 221 Sách bài tập Hình học 11 Nâng cao: ÔN TẬP CUỐI NĂM - HÌNH HỌC...

Câu 1 trang 221 Sách bài tập Hình học 11 Nâng cao. \(\eqalign{  & \overrightarrow {JI}  = \overrightarrow {MI}  - \overrightarrow {MJ}  = {1 \over 2}\left( {\overrightarrow {MM’}  - \overrightarrow {MN} } \right)  \cr  &  = {1 \over. ÔN TẬP CUỐI NĂM - HÌNH HỌC

Cho đường thẳng a và vectơ \(\overrightarrow u \) có giá vuông góc với a. Gọi F là phép hợp thành của đối xứng trục Đ­a. Gọi F là phép hợp thành của đối xứng trục Đ­a và tịnh tiến \({T_{\overrightarrow u }}\). Với điểm M bất kì, gọi M’ = F(M) và I là trung điểm của MM’.

a) Tìm quỹ tích của I khi M thay đổi.

b) Chứng minh rằng F là phép đối xứng trục.

 

Advertisements (Quảng cáo)

a) Nếu Đa biến điểm M thành N thì \({T_{\overrightarrow u }}\) biến điểm N thành điểm M’ tức là \(\overrightarrow {NM’}  = \overrightarrow u \). Vì vectơ \(\overrightarrow u \) có giá vuông góc với a nên ba điểm M, N và M’ cùng nằm trên đường thẳng m vuông góc với a. Gọi J là trung điểm của MN thì J nằm trên a và ta có :

\(\eqalign{  & \overrightarrow {JI}  = \overrightarrow {MI}  - \overrightarrow {MJ}  = {1 \over 2}\left( {\overrightarrow {MM’}  - \overrightarrow {MN} } \right)  \cr  &  = {1 \over 2}\overrightarrow {NM’}  = {{\overrightarrow u } \over 2}. \cr} \)

Như vậy I là ảnh của J qua phép tịnh tiến theo vectơ \({{\overrightarrow u } \over 2}\), suy ra quỹ tích I là đường thẳng a’ ảnh của a qua phép tịnh tiến đó.

b) Từ câu a), ta suy ra a’ là trung trực của đoạn thẳng MM’. Suy ra F là phép đối xứng trục với trục là đường thẳng a’.

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)