Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 19 trang 118 Sách bài tập Hình học 11 Nâng cao:...

Câu 19 trang 118 Sách bài tập Hình học 11 Nâng cao: Do SA ⊥ AB, AB //MN, MQ // SA nên thiết diện MNPQ là hình thang vuông tại M....

Câu 19 trang 118 Sách bài tập Hình học 11 Nâng cao. Trả lời. Bài 2 3 4: Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc

Cho hình chóp S.ABCD có đáy là hình bình hành, mặt bên SAB là tam giác vuông tại A. Với điểm M bất kì thuộc cạnh AD (M khác A và D), xét mặt phẳng (α) đi qua điểm M và song song với SA, CD.

a) Thiết diệm của hình chóp S.ABCD khi cắt bởi mp(α) là hình gì?

b) Tính diện tích thiết diện theo a và b; biết AB = a, SA = b, M là trung điểm của AD.

 

a) Dễ thấy thiết diện là tứ giác MNPQ trong đó MN // QP // CD, MQ // SA.

Advertisements (Quảng cáo)

Do SA ⊥ AB, AB //MN, MQ // SA nên thiết diện MNPQ là hình thang vuông tại M.

b) \({S_{MNPQ}} = {1 \over 2}\left( {MN + PQ} \right).MQ\)

Do M là trung điểm của AD nên:

\(\eqalign{  & MQ = {1 \over 2}SA = {1 \over 2}b  \cr  & PQ = {1 \over 2}CD = {1 \over 2}a  \cr  & MN = a \cr} \)

Vậy \({S_{MNPQ}} = {1 \over 2}\left( {a + {a \over 2}} \right).{b \over 2} = {{3{\rm{a}}b} \over 8}\).

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)