Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 54 trang 124 SBT Hình 11 nâng cao: Bài 2 3...

Câu 54 trang 124 SBT Hình 11 nâng cao: Bài 2 3 4: Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc...

Câu 54 trang 124 Sách bài tập Hình học 11 Nâng cao. Trả lời. Bài 2 3 4: Hai đường thẳng vuông góc. Đường thẳng vuông góc với mặt phẳng. Hai mặt phẳng vuông góc

Cho hình lập phương ABCD.A’B’C’D’ cạnh a. Xét tứ diện AB’CD’. Cắt tứ diện đó bằng mặt phẳng đi qua tâm của hình lập phương và song song với mp(ABC). Tính diện tích thiết diện thu được. Hãy xét kết quả của toán khi ABCD.A’B’C’D’ là hình hộp chữ nhật với ba kích thước là a, b, c.

 

Vì hình ABCD.A’B’C’D’ là hình lập phương nên AB’CD’ là tứ diện đều có cạnh \(a\sqrt 2 \) (a là cạnh của hình lập phương). Dễ thấy thiết diện là tứ giác MNPQ, trong đó M, N, P, Q lần lượt là trung điểm của các cạnh AB’, AD’, D’C, B’C. Do AB’CD’ là tứ diện đều nên \(B’D’ \bot AC\).

Vậy tứ giác MNPQ là hình vuông cạnh bằng \({{a\sqrt 2 } \over 2}\). Từ đó \({S_{MNPQ}} = {{{a^2}} \over 2}\)

Chú ý. Có thể chiếu tứ giác MNPQ xuống mặt phẳng (ABCD) theo phương chiếu A’A được tứ giác \({M_1}{N_1}{P_1}{Q_1}\) trong đó \({M_1},{N_1},{P_1},{Q_1}\) lần lượt là trung điểm của AB, AD, CD, BC và

Advertisements (Quảng cáo)

\({S_{MNPQ}} = {S_{{M_1}{N_1}{P_1}{Q_1}}} = {1 \over 2}{S_{ABC{\rm{D}}}} = {{{a^2}} \over 2}\).

Nếu hình lập phương ABCD.A’B’C’D’ được thay bởi hình hộp chữ nhật với \(AB = a,BC = b,AA’ = c\) thì thiết diện thu được vẫn là tứ giác MNPQ và MNPQ là hình thoi có độ dài hai đường chéo MP và NQ lần lượt là b, a. Do đó:

\({S_{MNPQ}} = {{ab} \over 2}\).

Chú ý. Thực hiện như phần chú ý ở trên thì

\({S_{MNPQ}} = {S_{{M_1}{N_1}{P_1}{Q_1}}} = {1 \over 2}{S_{ABC{\rm{D}}}} = {{ab} \over 2}\).

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)