Trang chủ Lớp 11 SBT Toán 11 Nâng cao (sách cũ) Câu 87 trang 131 Sách BT hình 11 nâng cao: Như vậy...

Câu 87 trang 131 Sách BT hình 11 nâng cao: Như vậy BMNC là hình thang....

Câu 87 trang 131 Sách bài tập Hình học 11 Nâng cao. hay \(BM = \sqrt {{a^2} + {x^2}} \). Ôn tập chương III. Vectơ trong không gian. Quan hệ vuông góc

Cho hình chóp S.ABCD có đáy là hình chữ nhật với AB = a, AD = b; cạnh bên SA vuông góc với mặt phẳng đáy, AS = 2a. Gọi M là điểm bất kì trên cạnh AS, đặt \(AM = x\left( {0 \le x \le 2{\rm{a}}} \right)\).

a) Thiết diện của hình chóp S.ABCD khi cắt bởi mp(MBC) là hình gì? Tính diện tích thiết diện.

b) Tính khoảng cách từ điểm S đến mp(MBC) ứng với mỗi vị trí của M.

 

a) Vì \(BC//SA{\rm{D}},M \in mp\left( {SA{\rm{D}}} \right) \cap mp\left( {MBC} \right)\)

nên \(mp\left( {MBC} \right) \cap \left( {SA{\rm{D}}} \right) = MN\)

mà \(MN//BC\left( {N \in S{\rm{D}}} \right)\).

Như vậy BMNC là hình thang.

Mặt khác \(BC \bot \left( {SAB} \right)\) nên \(BC \bot BM\).

Vậy BMNC là hình thang vuông.

Do đó thiết diện của hình chóp S.ABCD khi cắt bởi mp(MBC) nói chung là hình thang vuông.

Advertisements (Quảng cáo)

Khi x = 0 thì thiết diện là hình chữ nhật ABCD, và khi x = 2a thì thiết diện là tam giác SBC.

Ta có

\(\eqalign{  & {S_{BMNC}} = {1 \over 2}\left( {BC + MN} \right).BM  \cr  & B{M^2} = {a^2} + {x^2} \cr} \)

hay \(BM = \sqrt {{a^2} + {x^2}} \)

\({{MN} \over {A{\rm{D}}}} = {{SM} \over {SA}} = {{2{\rm{a}} - x} \over {2{\rm{a}}}}\), từ đó \(MN = b.{{2{\rm{a}} - x} \over {2{\rm{a}}}}\).

Từ đó

\(\eqalign{  & {S_{BMNC}} = {1 \over 2}\left( {b + b.{{2{\rm{a}} - x} \over {2{\rm{a}}}}} \right).\sqrt {{a^2} + {x^2}}   \cr  &  = {b \over {4{\rm{a}}}}\left( {4{\rm{a}} - x} \right)\sqrt {{a^2} + {x^2}}  \cr} \)

b) Do \(\left( {BMNC} \right) \bot \left( {SAB} \right)\) nên khi kẻ SH vuông góc với đường thẳng \(BM\left( {H \in BM} \right)\) thì \(SH \bot \left( {BMNC} \right)\).

Khoảng cách từ S đến mp(BCM) là SH. Dễ thấy

\(SH.BM = 2{{\rm{S}}_{SBM}} = 2.{1 \over 2}a\left( {2{\rm{a}} - x} \right)\)

Vậy \(SH = {{a\left( {2{\rm{a}} - x} \right)} \over {\sqrt {{a^2} + {x^2}} }}\)

Bạn đang xem bài tập, chương trình học môn SBT Toán 11 Nâng cao (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)