Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 1.6 trang 100 Sách bài tập (SBT) Đại số và giải...

Bài 1.6 trang 100 Sách bài tập (SBT) Đại số và giải tích 11: Dự đoán công thức tính Sn và chứng minh bằng phương pháp...

Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp.. Bài 1.6 trang 100 Sách bài tập (SBT) Đại số và giải tích 11 - Bài 1. Phương pháp quy nạp toán học

Cho tổng

\({S_n} = {1 \over {1.5}} + {1 \over {5.9}} + {1 \over {9.13}} + ... + {1 \over {\left( {4n - 3} \right)\left( {4n + 1} \right)}}\)     

a) Tính \({S_1},{ S _2},{S_3},{S_4}\) ;

b) Dự đoán công thức tính Sn và chứng minh bằng phương pháp quy nạp.

Giải:

Advertisements (Quảng cáo)

a)     Tính

\({S_1} = {1 \over 5},{S_2} = {2 \over 9},{S_3} = {3 \over {13}},{S_4} = {4 \over {17}}\)

b)     Viết lại

\(\eqalign{
& S = {1 \over 5} = {1 \over {4.1 + 1}},{S_2} = {2 \over 9} = {2 \over {4.2 + 1}}, \cr
& {S_3} = {3 \over {4.3 + 1}},{S_4} = {4 \over {4.4 + 1}}. \cr} \)

Ta có thể dự đoán \({S_n} = {n \over {4n + 1}}\)

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)