Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 1.7 trang 18 Sách bài tập Hình học 11 Tìm phép...

Bài 1.7 trang 18 Sách bài tập Hình học 11 Tìm phép đối xứng trục biến d thành d’...

Tìm phép đối xứng trục biến d thành d’. Bài 1.7 trang 18 Sách bài tập (SBT) Hình học 11 - Bài 3. Phép đối xứng trục

Trong mặt phẳng Oxy cho đường thẳng d có phương trình \(x - 5y + 7 = 0\) và đường thẳng d’ có phương trình \(5x - y - 13 = 0\). Tìm phép đối xứng trục biến d thành d’. 

Dễ thấy d và d’ không song song với nhau. Do đó trục đối xứng \(\Delta \) của phép đối xứng biến d thành d’ chính là đường phân giác của góc tạo bởi d và d’ . Từ đó suy ra \(\Delta \) có phương trình:

Advertisements (Quảng cáo)

\(\eqalign{
& {{\left| {x - 5y + 7} \right|} \over {\sqrt {1 + 25} }} = {{\left| {5{\rm{x}} - y - 13} \right|} \over {\sqrt {25 + 1} }} \cr
& \Leftrightarrow x - 5y + 7 = \pm \left( {5{\rm{x}} - y - 13} \right) \cr} \) 

Từ đó tìm được hai phép đối xứng qua các trục:

\(\Delta_1 \) có phương trình \(x + y - 5 = 0\), \(\Delta_2 \) có phương trình \(x - y - 1 = 0\).

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)