Có thể có một tam giác vuông mà số đo các cạnh của nó lập thành một cấp số cộng không ?. Bài 10 trang 128 Sách bài tập (SBT) Đại số và giải tích 11 - Ôn tập Chương III - Dãy số. Cấp số cộng và cấp số nhân
Có thể có một tam giác vuông mà số đo các cạnh của nó lập thành một cấp số cộng không ?
Giải:
Gọi số đo ba cạnh của tam giác vuông là x - d, x, x + d
Advertisements (Quảng cáo)
Theo giả thiết ta có \({\left( {x + d} \right)^2} = {\left( {x - d} \right)^2} + {x^2}\) (1)
Từ (1) tìm được x = 0, x = 4d
Như vậy có thể có tam giác vuông thoả mãn đầu bài, các cạnh của nó là 3d, 4d, 5d. Đặc biệt, nếu d = 1 thì tam giác vuông có các cạnh là 3, 4, 5 (tam giác Ai Cập).