Trang chủ Lớp 11 SBT Toán lớp 11 (sách cũ) Bài 2.50 trang 87 Sách bài tập Hình học 11: Cho tứ...

Bài 2.50 trang 87 Sách bài tập Hình học 11: Cho tứ diện ABCD. Tìm vị trí điểm M trong không gian sao...

Cho tứ diện ABCD. Tìm vị trí điểm M trong không gian sao cho. Bài 2.50 trang 87 Sách bài tập (SBT) Hình học 11 - II. Đề toán tổng hợp

Cho tứ diện ABCD. Tìm vị trí điểm M trong không gian sao cho:

\(M{A^2} + M{B^2} + M{C^2} + M{{\rm{D}}^2}\) đạt giá trị cực tiểu.

Gọi E, F lần lượt là trung điểm của AB và CD. Ta có:

\(M{A^2} + M{B^2} = 2M{E^2} + {1 \over 2}A{B^2}\,\,\,\,\,\left( 1 \right)\) 

\(M{C^2} + M{D^2} = 2M{F^2} + {1 \over 2}C{{\rm{D}}^2}\,\,\,\,\,\left( 2 \right)\) 

Cộng (1) và (2) ta có:

Advertisements (Quảng cáo)

\(M{A^2} + M{B^2} + M{C^2} + M{{\rm{D}}^2}\)

\( = 2\left( {M{E^2} + M{F^2}} \right) + {1 \over 2}\left( {A{B^2} + C{{\rm{D}}^2}\,\,} \right)\,\,\) 

Gọi J là trung điểm của EF, ta có:

\(\left( {M{E^2} + M{F^2}} \right) = 2M{J^2}\, + {1 \over 2}E{F^2}\) 

Khi đó:

\(\eqalign{
& M{A^2} + M{B^2} + M{C^2} + M{{\rm{D}}^2} \cr
& = 2\left( {2M{J^2}\, + {1 \over 2}E{F^2}} \right) + {1 \over 2}\left( {A{B^2} + C{{\rm{D}}^2}} \right) \cr
& \ge E{F^2} + {1 \over 2}\left( {A{B^2} + C{{\rm{D}}^2}} \right) \cr} \) 

Vậy \(M{A^2} + M{B^2} + M{C^2} + M{{\rm{D}}^2}\) đạt giá trị nhỏ nhất khi \(M \equiv J\).

Bạn đang xem bài tập, chương trình học môn SBT Toán lớp 11 (sách cũ). Vui lòng chọn môn học sách mới cần xem dưới đây:

Advertisements (Quảng cáo)