Tìm cấp số cộng \(\left( {{u_n}} \right)\) biết
a)
\(\left\{ \matrix{
{u_1} + {u_2} + {u_3} = 27 \hfill \cr
u_1^2 + u_2^2 + u_3^2 = 275 \hfill \cr} \right.\)
b)
\(\left\{ \matrix{
{u_1} + {u_2} + ... + {u_n} = a \hfill \cr
u_1^2 + u_2^2 + ... + u_n^2 = {b^2} \hfill \cr} \right.\)
Giải:
a) Ta có hệ
\(\left\{ \matrix{
{u_1} + {u_2} + {u_3} = 27\,\,\,\left( 1 \right) \hfill \cr
u_1^2 + u_2^2 + u_3^2 = 275\,\,\,\left( 2 \right) \hfill \cr} \right.\)
Áp dụng công thức \({u_1} + {u_3} = 2{u_2}\) suy ra \({u_2} = 9\,\,\,\left( 3 \right)\)
Thay \({u_2} = 9\) vào (1) và (2) ta được
Advertisements (Quảng cáo)
\(\left\{ \matrix{
{u_1} + {u_3} = 18 \hfill \cr
u_1^2 + u_3^2 = 194 \hfill \cr} \right.\)
Từ đây tìm được \({u_1} = 5,{u_3} = 13\) hoặc \({u_1} = 13,{u_3} = 5\)
Vậy ta có hai cấp số cộng 5, 9, 13 và 13, 9, 5
b) Ta có
\(\eqalign{
& {b^2} = u_1^2 + {\left( {{u_1} + d} \right)^2} + ... + {\left[ {{u_1} + \left( {n - 1} \right)d} \right]^2} \cr
& {\rm{ = }}nu_1^2 + 2{u_1}d\left[ {1 + 2 + ... + \left( {n - 1} \right)} \right] + {d^2}\left[ {{1^2} + {2^2} + ... + {{\left( {n - 1} \right)}^2}} \right] \cr
& {\rm{ = }}nu_1^2 + n\left( {n - 1} \right){u_1}d + {{n\left( {n - 1} \right)\left( {2n - 1} \right){d^2}} \over 6}\,\,\,\,\,\,\,\,(1){\rm{ }} \cr} \)
Mặt khác, \(a = n{u_1} + {{n\left( {n - 1} \right)d} \over 2}\,\,\,\,\,\,\left( 2 \right)\)
Từ (2) tìm được \({u_1}\) thay \({u_1}\) vào (1) đểm tìm d.
Kết quả \(d = \pm \sqrt {{{12\left( {n{b^2} - {a^2}} \right)} \over {{n^2}\left( {{n^2} - 1} \right)}}} \)
\({u_1} = {1 \over n}\left[ {a - {{n\left( {n - 1} \right)} \over 2}d} \right].\)