Trong các dãy số (un)sau đây, dãy số nào là cấp số cộng ?
a) \({u_n} = 3n - 1\) ;
b) \({u_n} = {2^n} + 1\) ;
c) \({u_n} = {\left( {n + 1} \right)^2} - {n^2}\) ;
d)
\(\left\{ \matrix{
{u_1} = 3 \hfill \cr
{u_{n + 1}} = 1 - {u_n} \hfill \cr} \right.\)
Giải:
Advertisements (Quảng cáo)
a) \({u_{n + 1}} - {u_n} = 3\left( {n + 1} \right) - 1 - 3n + 1 = 3\)
Vì \({u_{n + 1}} = {u_n} + 3\) nên \(\left( {{u_n}} \right)\) dãy số là cấp số cộng với \({u_1} = 2,d = 3.\)
b) \({u_{n + 1}} - {u_n} = {2^{n + 1}} + 1 - {2^n} - 1 = {2^n}.\) Vì \({2^n}\) không là hằng số nên dãy số \(\left( {{u_n}} \right)\) không phải là cấp số cộng.
c) Ta có \({u_n} = 2n + 1.\)
Vì \({u_{n + 1}} - {u_n} = 2\left( {n + 1} \right) + 1 - 2n - 1 = 2,\) nên dãy đã cho là cấp số cộng với \({u_1} = 3;d = 2.\)
d) Để chứng tỏ \(\left( {{u_n}} \right)\) không phải là cấp số cộng, ta chỉ cần chỉ ra, chẳng hạn \({u_3} - {u_2} \ne {u_2} - {u_1}\) là đủ.